
IEC 61131 Programming
Manual
Rev. C 01/2016

Cod. Doc.: MP399609

General Supply Conditions

 i

No part of this document may be copied or reproduced in any form without the prior written consent

of Altus Sistemas de Automação S.A. who reserves the right to carry out alterations without prior

advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following

information to clients who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the
stringent quality control it is subjected to. However, any electronic industrial control equipment

(programmable controllers, numerical commands, etc.) can damage machines or processes controlled

by them when there are defective components and/or when a programming or installation error

occurs. This can even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional

external installations for safety reasons. This concern is higher when in initial commissioning and

testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since

they do not issue any kind of pollutant during their use. However, concerning the disposal of

equipment, it is important to point out that built-in electronics may contain materials which are

harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper

waste management.

It is essential to read and understand the product documentation, such as manuals and technical
characteristics before its installation or use.

The examples and figures presented in this document are solely for illustrative purposes. Due to

possible upgrades and improvements that the products may present, Altus assumes no responsibility
for the use of these examples and figures in real applications. They should only be used to assist user

trainings and improve experience with the products and their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the

commercial proposals.

Altus guarantees that their equipment works in accordance with the clear instructions contained in

their manuals and/or technical characteristics, not guaranteeing the success of any particular type of

application of the equipment.

Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are

dealing with third-party suppliers.

The requests for additional information about the supply, equipment features and/or any other Altus
services must be made in writing form. Altus is not responsible for supplying information about its

equipment without formal request.

COPYRIGHTS

Nexto and MasterTool are the registered trademarks of Altus Sistemas de Automação S.A.

Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

Summary

 ii

Summary

SUMMARY .. II

1. INTRODUCTION ...6

Documents Related to this Manual ...6
General Regards on ALTUS Documentation ..6
MasterTool IEC XE Support Documentation ...7

Visual Inspection..7
Technical Support ..7
Warning Messages Used in this Manual ...8

2. CONCEPTS AND BASIC COMPONENTS ...9

Introduction ...9
Basic Concepts ...9
Advanced Functionalities ..9

Object Orientation in Programming and in the Project Structure ...9
Special Data Types .. 10
Operators and Special Variables ... 10
User Management and Access Rights Concept ... 10
Characteristics in Editors ... 10
Library Versions .. 10
Additional Functionalities .. 10

Profiles ... 11
Project .. 11
Device ... 11
Application ... 12
Task Configuration .. 12

Important Notes for Multitasking Systems ... 12
Communication.. 13
Code Generation and Online Change ... 13

Code Generation and Compile Information .. 13
Online Change ... 13
Boot Application (Boot Project) ... 13
Sending/Login Project Method without Project Differences.. 13

Monitoring ... 14
Debugging .. 14
Supported Programming Languages .. 14
Program Organization Units ... 14

POU .. 15
Program ... 17
Function .. 18
Function Block .. 20
Data Type Unit .. 24
Method .. 25
Property ... 26
Action.. 27
External Function, Function Block, Method ... 28
Global Variable List - GVL.. 28
Persistent Variables.. 28
External File .. 29
POUs for Implicit Checks .. 30

Summary

 iii

Library Management... 30
Installing and Including on Project ... 31
Referenced Libraries .. 31
Library Versions .. 31
Unique Access to Library Modules or Variables... 32
Creating Libraries, Encoding, Documentation .. 32

3. MENU COMMANDS .. 34

Library Manager ... 34
Library Manager Commands .. 34
Add Library ... 34
Properties .. 37
Try to Reload the Library ... 38

4. PROGRAMMING REFERENCE .. 39

Declaration ... 39
Variables Declaration... 39
Recommendations on the Naming of the Identifiers ... 40
Variables Initialization ... 44
Arbitrary Expressions For Variable Initialization.. 44
Declaration Editor .. 44
Autodeclaration Dialog .. 44
Shortcut Mode ... 45
AT Declaration .. 45
Keywords .. 46
Local Variables VAR ... 46
Input Variables - VAR_INPUT .. 46
Output Variables - VAR_OUTPUT.. 47
Input and Output Variables - VAR_IN_OUT ... 47
Global Variables - VAR_GLOBAL ... 47
Temporary Variables - VAR_TEMP .. 48
Static Variables - VAR-STAT .. 48
External Variables – VAR_EXTERNAL ... 48
Attribute Keywords for Variable Types .. 48
Remanent Variables ... 48
Constants ... 50
Variables Configuration – VAR_CONFIG ... 51
Declaration and Initialization of User Defined Data Types ... 52
FB_Init and FB_Reinit Methods .. 52
FB_Exit ... 53
Pragma Instructions ... 54
List Components Functionality .. 69

I/O Mapping... 69
General .. 69
Channels .. 70

Data Types ... 71
Standard Data Types .. 71
Extensions to the IEC 1131-3 Standard .. 73
User Defined Data Types ... 76

Operators ... 83
IEC Operators and Norm-Extending Functions .. 83
Arithmetic Operators ... 83
Bitstring Operators... 88
Bit-Shift Operators... 89

Summary

 iv

Selection Operators .. 92
Comparison Operators ... 95
Address Operators ... 98
Calling Operator .. 99
Type Conversion Functions.. 99
Numeric Functions... 107
IEC Extending Operators ... 112

Operands .. 113
Constants ... 114
Variables ... 117
Address ... 119
Functions ... 121

5. PROGRAMMING LANGUAGES EDITORS .. 122

CFC Editor .. 122
Continuous Function Chart Language - CFC .. 123
Cursor Positions in CFC... 123
CFC Elements / Toolbox .. 124
Insert and Organize Elements ... 127
CFC Editor in Online Mode ... 129

SFC Editor ... 130
SFC - Sequential Function Chart .. 131
Cursor Positions in SFC ... 131
Working in SFC Editor .. 133
SFC Element Properties ... 134
SFC Elements / Toolbox .. 135
Qualifier .. 143
Implicit Variables - SFC Flags ... 143
Sequence of Processing in SFC .. 148
SFC Editor in Online Mode.. 149

Structured Text (ST) / Extended Structured Text (ExST) ... 150
Expressions.. 151
Instructions .. 152

ST Editor .. 158
ST Editor in Online Mode .. 158

FBD/LD/IL Editor ... 161
Function Block Diagram - FBD ... 161
Ladder Diagram - LD... 162
Instruction List - IL .. 162
Working in the FBD e LD Editor View .. 165
Working in the IL Editor View... 166
Cursor Positions in FBD, LD and IL .. 171
FBD/LD/IL Menu .. 173
Elements .. 174

6. LIBRARIES ... 186

The Standard.library Library ... 186
String Functions ... 186
Bistable Function Blocks ... 191
Trigger... 192
Counter .. 193
Timer ... 196

The UTIL.library Library ... 200
BCD Conversion.. 200

Summary

 v

BIT/BYTE Functions ... 201
Mathematical Auxiliary Function ... 202
Controllers ... 206
Signal Generators .. 209
Function Manipulators ... 213
Analogue Value Processing.. 215

NextoPID.library Library ... 216
PID .. 216
PID_REAL .. 220
PID_INT.. 222

LibRecipeHandler.. 236
WriteRecipe ... 236

7. GLOSSARY ... 238

1. Introduction

 6

1. Introduction

Nexto Series is a powerful and complete Programmable Logic Controller (PLC) with unique and

innovative features. Due to its flexibility, smart design, enhanced diagnostics capabilities and
modular architecture, Nexto can be used for control systems from medium or high-end applications.

Due to its compact size and superior performance, Nexto can also be used for small automation

systems with time critical requirements.

MasterTool IEC XE is a complete tool for programming, debugging and performing configuration
and simulation of user applications. Based on a concept of being integrated, flexible and easy to use,

this software provides six programming languages defined by IEC 61131-3 standard: Structured Text

(ST), Sequential Function Chart (SFC), Function Block Diagram (FBD), Ladder Diagram (LD),
Instruction List (IL) and Continuous Function Chart (CFC). MasterTool IEC XE allows the use of

different languages on the same application, providing to the user a powerful way to organize the

application and to reuse codes used in previous applications.

This product offers features for every stage of an automation application, starting from initial
graphical architecture topology analyses, passing through a programming environment that supports

IEC 61131-3 languages and a realistic simulation tool, where the user can verify application’s

behavior before running in a real system and ending in a complete diagnostics and status
visualization interface.

MasterTool IEC XE also offers two different protection schemes as application security features: IP

Protection and Secure PLC Login. IP Protection is targeted to protect user’s intellectual property,
allowing the user to protect the complete project and files by defining a password to access them.

This means that these files will be available (both read and write operations) only after unlocking

them with the correct password. Secure PLC Login provides a way to protect the user application

from any unauthorized access. By enabling this feature, Nexto CPU will request a user and a
password before performing any available command in MasterTool IEC XE and Nexto CPU, as

stopping, programming and forcing of outputs in the target CPU.

MasterTool IEC XE allows the use of fieldbus interfaces in an easier way than ever seen before. The
user does not need any special software to configure fieldbuses anymore, because MasterTool IEC

XE covers this requirement providing a unique tool reducing engineering time and making

applications more simple.

In order to increase user’s productivity, some important features are also available: Module Printing

which is a report generation of every module specific parameters and application general settings,

Logic Printing which is a report generation of all application code, Enhanced Project Verification

which helps user to check several different conditions during programming, like programming
syntax, power supply module current consumption, placement rules for Nexto modules, modules

parameters and settings, Real Time Debugging which provides useful way to check the application

step-by-step, verify variables values or add and remove breakpoints during Nexto CPU
programming.

Documents Related to this Manual

For additional information about MasterTool IEC XE, you can examine other specific documents in

addition to this one. These documents are available in its last review on www.altus.com.br.

General Regards on ALTUS Documentation

Each product has a document called Technical Characteristics (CT), where there are the

characteristics for the product in question. Additionally, the product may have User Manuals

(manual’s codes, if applicable, are always mentioned at CTs from the respective modules).

1. Introduction

 7

MasterTool IEC XE Support Documentation

It is advisable to consult the following documents as a source of additional information:

Document Code Description Language

CE114000 Nexto Series – Features and Configuration English

CT114000 Série Nexto – Características e Configurações Portuguese

CS114000 Serie Nexto – Especificaciones y Configuraciones Spanish

CE114100 CPUs Nexto Series – Features and Configuration English

CT114100 UCPs Série Nexto – Características e Configurações Portuguese

CS114100 UCPs Serie Nexto – Especificaciones y Configuraciones Spanish

CE103705 MasterTool IEC XE – Features and Configuration English

CT103705 MasterTool IEC XE – Características e Configurações Portuguese

CS103705 MasterTool IEC XE – Especificaciones y Configuraciones Spanish

MU214600 Nexto Series User Manual English

MU214000 Manual de Utilização Série Nexto Portuguese

MU214300 Manual Del Usuario Serie Nexto Spanish

MU214605 Nexto Séries CPUs User Manual English

MU214100 Manual de Utilização UCPs Série Nexto Portuguese

MU214305 Manual del Usuario UCPs Serie Nexto Spanish

MU299609 MasterTool IEC XE User Manual English

MU299048 Manual de Utilização MasterTool IEC XE Portuguese

MU299800 Manual del Usuario MasterTool IEC XE Spanish

MU399609 IEC 61131 Programming Manual English

MU399048 Manual de Programação IEC 61131 Portuguese

MU399800 Manual de Programación IEC 61131 Spanish

Table 1-1. Support Documentation

Visual Inspection

Prior to installation, we recommend performing a careful visual inspection of equipment, by
checking if there is damage caused by shipping. Make sure all components of your order are in

perfect condition. In case of defects, inform the transportation company and the nearest Altus

representative or distributor.

CAUTION:
Before removing modules from the package, it is important to discharge eventual static
potentials accrued in the body. For this, touch (with nude hands) in a metallic surface
grounded before modules handling. Such procedure ensures that the levels of static electricity
supported by the module will not be overcome.

It is important to record the serial number of each item received, as well as software revisions, if any.

This information will be necessary if you need to contact Altus Technical Support.

Technical Support

To contact Altus Technical Support in São Leopoldo, RS, call +55 51 3589-9500. To find the
existent centers of Altus Technical Support in other locations, see our website (www.altus.com.br) or

send an email to altus@altus.com.br.

If the equipment is already installed, please have the following information when requesting
assistance:

 Models of equipment used and the configuration of installed system

 Serial number of CPU

 Equipment review and executive software version, listed on the label affixed to the product side

1. Introduction

 8

 Information about the operation of CPU, obtained through MasterTool IEC XE programmer, and

graphical display from CPU

 Contents of the application program, obtained through MasterTool IEC XE programmer

 Version of the programmer used.

Warning Messages Used in this Manual

In this manual, warning messages will present the following formats and meanings:

DANGER:
Relates potential causes, which if not noted, generate damages to physical integrity and health,
property, environment and production loss.

CAUTION:
Relates configuration details, application and installation that shall be followed to avoid
condition that could lead to system fail, and its related consequences.

ATTENTION:

Indicate important details to configuration, application or installation to obtain the maximum
operation performance from the system.

2. Concepts and Basic Components

 9

2. Concepts and Basic Components

Introduction

MasterTool IEC XE is a device-independent PLC software programming. Matching the IEC 61131-3

standard it supports all standard programming languages.

Basic Concepts

Regard the following basic concepts determining programming with MasterTool IEC XE:

 Object Orientation: The mind of object orientation is not only reflected by the availability of

appropriate programming elements and features but also in the structure and version handling of

MasterTool IEC XE and in the project organization.

 Component-based structure of the programming system: The functionality available in the

user interface (editors, menus etc.) depends on the currently used components defined in a
profile. There are system components, which are essential, and optional components.

 Project Organization is also determined by the mind of object orientation: A MasterTool

IEC XE project contains a PLC program composed of various programming objects and it

contains definitions of the "resources" which are needed to run instances of the program

(application) on defined target systems (devices, PLCs). So there are two main types of objects in
a project:

o Programming objects: Programming objects (POUs) which can be instantiated in the entire

project, i.e. for all applications defined in the project, must be managed in the POUs window.
These are programs, functions, function blocks, methods, actions, data type definitions etc.

The instantiating is done by calling a program POU by an application-assigned task.

Programming objects which are managed in the devices window, i.e. which are directly
assigned to an application, cannot only be instantiated by another application inserted below.

o Resource objects: These are device objects, applications, task configurations and which are

managed in the "device tree" or in the graphic editor (depending on the device type). When

inserting objects in the devices tree, the hardware to be controlled must be mapped according
to certain rules.

 Code generation: By integrated compilers and use of machine code results in short execution

times.

 Data transfer to the controller device: The data transfer between MasterTool IEC XE and the

device is done via a gateway (component) and a runtime system.

 Standard and professional interface: Predefined feature sets serve to be able to choose

between a "standard" user interface with a reduced selection of features and less complexity and

a "professional" environment supporting all features. When the programming system is initially

started after the first installation on the system, you will be prompted to choose one of the sets.
But also later you still can switch the set and also a user-defined customization of the currently

used feature set is possible. For the particular differences between the standard and professional

version please see Features in the MasterTool IEC XE User Manual - MU299609.

Advanced Functionalities

In the following you can see the advanced functionalities available in the MasterTool IEC XE.

Object Orientation in Programming and in the Project Structure

Extensions for function blocks: Properties, Methods, Inheritance, Method Invocation.

Applications related to devices such as independents programming objects instances.

2. Concepts and Basic Components

 10

Special Data Types

 UNION

 LTIME

 References

 Enumerations: types of basic data can be specified

 DI: DINT := DINT#16#FFFFFFFF

Operators and Special Variables

 Scope operators: extended namespaces

 Function pointer: replacing the INSTANCE_OF operator

 Init Method: replacing the INI operator

 Exit Method

 Output variables in functions and method calls

 VAR_TEMP/VAR_STAT/VAR_RETAIN/ VAR_PERSISTENT

 Arbitrary expressions for variables initialization

 Assignment as expression

 Index access with pointers and strings

User Management and Access Rights Concept

 User accounts, user groups, specific rights to groups for access and actions in specific objects.

Characteristics in Editors

 ST Editor: editing resources, break line, autocomplete, monitoring and SET/RESET assignment

in line

 FBD, LD, IL Editors reversible and programmable in one combined editor

 IL Editor as Table editor

 FBD, LD, IL Editors: possibility of changing the main output in boxes with multiple outputs

 FBD, LD, IL Editors without automatic update of the box parameters

 FBD, LD, IL Editors: branches and networks inside the networks

 SFC Editor: only one type of step, macros, multiple selections of independent elements, without

syntactic checkup during editing and automatic declaration of signal variables

Library Versions

 Several library versions can be used in the same project using namespaces

 Installation in repositories, automatic update and debugging

Additional Functionalities

 Menus, toolbar and keyboard usage

 Inclusion of specific user components

 PC Configuration and task configuration integrated in the device tree

 UNICODE Support

 Comments in line

 Watchdog

 Multiple selection in the project object device

 Online help on the user interface

 Conditional building

 Conditional breakpoints

 Debugging: step to the cursor and return to previous call

 Field bus driver according to IEC 61131-3

 PC and symbol configuration available on the application

 Free allocation of code and data memory

2. Concepts and Basic Components

 11

 Each object can be specified as “internal” or “external” (late link on the runway system)

 Pre building notes concerning syntactic errors

Profiles

A MasterTool IEC XE project profile is a set of rules, common characteristics and patterns used in

the development of an industrial automation solution. It’s a profile that influences the form of

implementation of the application. With the diversity of types of applications supported by Nexto
Series Runtime System, to follow a profile is a way to reduce the complexity in programming.

Applications can be created as one of the following profiles:

 Single

 Basic

 Normal

 Expert

 Custom

MasterTool IEC XE software provides a template called MasterTool Standard Project, which shall

be selected by the user as a model in the project creation. The new application will be developed as a
specific profile, also chosen by the user, adopting rules, features and predefined patterns. Each

project profile defines.

To ensure compatibility of a project to a certain profile throughout development, we use two
approaches:

 MasterTool IEC XE only allows the creation of projects based on a template by selecting at the

same time the profile to be used

 In code generation, MasterTool IEC XE checks all the rules defined for the valid profile to the

project

For further details, see Profiles in the User Manual Nexto Series CPUs – MU214605, chapter Initial

Programming.

Project

A project contains the POU objects which make up a PLC program, as well as the definitions of

resource objects necessary to run one or several instances of the program (application) on certain
target systems (PLCs, devices). POU objects are managed in the POUs view window or at the

Devices window. POUs created by the Wizard appear at the Devices window; Device specific

resource objects are managed also managed in this window.

A project is saved in a file <project name>.project.

NOTE: The appearance and properties of the user interface are defined and stored in MasterTool
IEC XE and not in the project.

Device

In the Devices window (“device tree”) the hardware can be mapped on which the application is to

run.

Each “device object” represents a specific (target) hardware object. Examples: controller, field bus

node, bus coupler, I/O-module, monitor.

Each device is defined by a device description and must be installed on the local system in order to

be available for inserting in the Device tree (see below). The device description file defines the

properties of a device concerning configurability, programmability and possible connections to other
devices.

2. Concepts and Basic Components

 12

In the Device tree are managed objects needed to run an application on the device (controller, CP),

including implementation, configuration tasks and tasks. However, specific programming objects

(POUs, global variable lists and Library Manager) can - instead of being managed as units
instantiable global design in the window of POUs - ONLY be managed in the Device tree and in this

case are available only in its application or its "secondary applications".

Application

An “application” is a set of objects which are needed for running a particular instance of the PLC

program on a certain hardware device (PLC, controller). For this purpose “independent” objects,
managed in the POUs view, are instantiated and assigned to a device in the Devices view. This meets

the mind of object orientated programming. However also purely application-specific POUs can be

used.

An application is represented by an Application () object in the Devices tree , insertable below a

programmable device node (PLC Logic). Below an application entry the objects defining the
applications “resource set” are to be inserted.

The standard application, “Application”, is created along with new projects created from the template

MasterTool Standard Project. It is added to the device tree below the item Device and PLC Logic.

An essential part of each application is the Task Configuration that controls the execution of a

program (POUs instances or specific POU of the application). Additionally, resources objects can be

assigned such as global variables lists, libraries, which - unlike those managed in the window of

POUs - can only be used for specific application and its sub items.

When going to log in with an application on a target device (PLC or simulation target), it will be

checked which applications currently are on the PLC and whether the application parameters on the

PLC are matching those in the project configuration. Appropriate messages will indicate mismatches.

Task Configuration

The Task Configuration () defines one or several tasks for controlling the processing of an
application program.

It is an essential resource object for an application and it is inserted automatically when you create a
new project from MasterTool Standard Project. A task can call an application-specific program

POU, which is only available in the device tree below the application, as well as a program which is

managed in the POUs window. In the latter case the project-globally available program will be
instantiated by the application.

A task configuration can be edited in the Task Editor, the available options being target-specific.

In online mode the Task Editor provides a monitoring view giving information on cycles, cycle times
and task status.

Important Notes for Multitasking Systems

On some systems real preemptive multitasking is realized. In this case the following must be

regarded.

All tasks share one process map. Reason: An own process map for each task would charge the

performance. So however the process map always can only be consistent to one task. Hence the user,

when creating a project, explicitly must take care that in case of conflicts the input data will be
copied to a save area, the same problems have to be regarded for the outputs. For example, modules

of the SysSem.library could be used to solve the synchronization problems.

Also when accessing other global objects (global variables, modules), consistency problems might
occur as soon as the size of the objects exceeds the data width of the processor (structures or

ARRAYS forming a logical unit). Also here the modules of the SysSem.library might be used to

solve the problems.

2. Concepts and Basic Components

 13

Communication

For information about Communication (Configuration of a PLC, Network topology, Addressing and

routing, Structure of addresses and Network variables), see MasterTool IEC XE User Manual –

MU299609.

Code Generation and Online Change

Code Generation and Compile Information

Machine code will not be generated until the application project gets downloaded to the target device

(PLC, simulation target). At each download the compile information, containing the code and a

reference ID of the loaded application, will be stored in the project directory in a file “<project
name>.<device name>.<application>.compileinfo”. The compile info will be deleted when the Clean

and Clean all command are performed.

Online Change

If the application project currently running on the controller has been changed in the programming

system since it has been downloaded last, just the modified objects of the project will be loaded to

the controller while the program keeps running there.

ATTENTION:
Online Change modifies the running application program and does not affect a restart process. Make

sure that the new application code nevertheless will affect the desired behavior of the system.

Depending on the controlled system, damages to machines and parts could result, or even health and
life of persons could be endangered.

NOTES:
- When an online change is done, the application-specific initializations (homing etc.) will not be
executed because the machine keeps its state. For this reason the new program code might not be
able to work as desired.
- Pointer variables keep their values form the last cycle. If there is a pointer on a variable, which has
changed its size due to an online change, the value will not be correct any longer. Make sure that
pointer variables get re-assigned in each cycle.

Boot Application (Boot Project)

A boot application is the project which will be started automatically when the controller gets started .

For this purpose the project must be available on the PLC in a file <project name>.app. This file can
be created in offline mode via the Create boot application command (Online menu).

Each sending was successful, the active application will be automatically stored in the file

"<application>.app" in the system folder of the device, thus available as a startup application. The

Create boot application command also lets you save a file in this application in offline mode.

Sending/Login Project Method without Project Differences

In order to ensure that the user won’t have problems on sending and logging same projects in the

CPUs running from different stations, it can be performed the following steps after sending a project:

 In the Additional files dialog (Project, Project Settings, Source Download menu and Additional

files.. button) select the option Download information files.

 Close all dialogs by clicking OK

 Run the command Source download (File menu)

 In the Select Device dialog that opens, choose the CPU on which the project was sent

 Close the dialog by clicking OK, wait for the download of the project

2. Concepts and Basic Components

 14

To login on running CPUs without generating changes on project from different stations, you must

open a Project Archive generated from the original project and execute the Login command. In the

absence thereof may be made of the following steps:

 Run the command Source upload... (File menu)

 In the Select Device dialog that opens, choose the CPU on which the project was sent

 Close the dialog by clicking OK, wait for the loading of the project

 In the Project Archive dialog, which opens at the end of the loading process, choose the folder to

extract and click on Extract

 The project will open and Login command can be executed in the corresponding CPU

For further information see: File Menu and Online Menu in the MasterTool IEC XE User Manual -

MU299609.

Monitoring

In online mode there are various possibilities to display the current values of the watch expressions of
an object on the PLC:

For more information see Monitoring in the MasterTool IEC XE User Manual - MU299609.

Debugging

To evaluate programming errors you can use the MasterTool IEC XE debugging functionality in
online mode. In this context regard the possibility to check an application in simulation mode, i.e.

without the need of connecting to a real hardware target device.

Breakpoints can be set at certain positions to force an execution break. Certain conditions, such as

which tasks are concerned and in which cycles the breakpoint should be effective, can be set for each
breakpoint. Stepping functions are available to get a program executed in controlled steps. At each

break the current values of the variables can be examined. A call stack can be viewed for the

currently reached step position.

For further information about this item see: Breakpoints in the MasterTool IEC XE User Manual -

MU299609.

Supported Programming Languages

All of the programming languages mentioned in the IEC standard IEC 61131 are supported via

specially adapted editors.

 FBD/LD/IL editor for Function Block Diagram (FBD), Ladder Logic Diagram (LD) and

Instruction List (IL)

 SFC editor for Sequential Function Chart

 ST editor for Structured Text

Additionally MasterTool IEC XE provides an editor for programming in CFC that is not part of the

IEC standard: CFC editor for Continuous Function Chart.

Program Organization Units

It is basically used for all objects which are used to create a PLC program.

POUs which are managed in the "POUs" view are not device-specific but they might be instantiated

for the use on a device (application). For this purpose program POUs must be called by a task of the

respective application.

POUs, which are ONLY managed in the Devices view, i.e. which are inserted in the "device tree"

explicitly below an application, can only be instantiated by applications indented below this

application (child application). For further information see the descriptions of the Device Tree and
Application in the MasterTool IEC XE User Manual – MU299609.

2. Concepts and Basic Components

 15

But POU also is the name of a certain sub-category of these objects in the Add Object menu, at this

place just comprising programs, function blocks and functions.

So, a Program Organization Unit object in general is a programming unit, an object which is
managed either non-device-specifically in the POUs window or device-specifically in the Devices

window and can be viewed and edited in an editor window. A POU object can be a program,

function, function block as well as a method, action, DUT (Data Unit Type) or an external file of any
format.

Regard the possibility to set certain properties (like e.g. build conditions etc.) for each particular POU

object.

The following POU object types can be used per default:

 POU

 Action

 DUT (Data Type Unit)

 External file

 Global Variable List

 Method

 Property

 Program

 Function

 Function Block

 Persistent Vars

 POUs for Implicit Checks

Besides the Program Organization Unit objects there are Device objects used for running the program

on the target system (resource, application, task configuration, etc...). Those are managed in the

Devices view.

POU

A POU - in this context - is a Program Organization Unit of type Program, Function or Function

block.

In order to add a POU () select an appropriate entry in the POUs or Devices tree (for example an

application object), use command Add Object from the context menu and select POU from the

appearing submenu. The Add POU dialog will open, where you have to configure the POU

concerning name, type and implementation language. In case of a function block optionally
EXTENDS and IMPLEMENTS properties can be defined, in case of a function also the return type

must be specified. See the respective chapters on Program, Function, and Function Block.

2. Concepts and Basic Components

 16

Figure 2-1. Add POU Dialog

Depending on the type the POU can be supplemented by methods, properties, actions, transitions. For

this also use the Add Object command.

The hierarchical order of processing the POU instances of an application depends on a device
specific configuration (call stack).

Each POU consists of a declaration part and an implementation part. The body is written in one of

the available programming languages, e.g. IL, ST, SFC, FBD, LD or CFC.

The MasterTool IEC XE supports all POUs described by IEC 61131-3. To use these POUs in the

project, you must include the standard.library library. The projects created from the template

MasterTool Standard Project already have this library loaded.

NOTE: In some examples of this manual the code is declared sequentially, but to use it must be
separated, the top part of the programming language editor is used for declarations and the bottom
part should be used for the implementations.

Calling POUs

POUs can call other POUs. Recursions however are not allowed.

When a POU assigned to an application calls another POU just by its name (without any namespace

added), regard the following order of browsing the project for the POU to be called:

1. Current application

2. Library Manager of current application

3. POUs view

2. Concepts and Basic Components

 17

4. Library Manager in POUs view

If a POU with the name specified in the call is available in a library of the applications library

manager as well as an object in the POUs view, there is no syntax for explicitly calling the POU in
the POUs view just by using its name. In this case you would have to move the concerned library

from the applications library manager to the POUs view library manager. Then you could call the

POU from the POUs view just by its name (and if needed that from the library by preceding the
library namespace).

For further information see also the item: POUs for Implicit Checks.

Program

A program is a POU which returns one or several values during operation. All values are retained
from the last time the program was run until the next.

A program POU can be added to the project via the Add Object command. To assign the program to

an existing application, select the application entry in the Devices view and use the command from
the context menu. Otherwise it will be added to the POUs view. In the Add POU dialog choose type

Program, enter a name for the program and set the desired implementation language. After

confirming the settings with button Open the editor window for the new program will open and you

can start editing the program.

The syntax for declaring a program:

PROGRAM <PROGRAM NAME>

This is followed by the variable declarations of input, output and program variables, optionally also

access variables.

Figure 2-2. Program

Program Calls

A program can be called by another POU. But: A program call in a function is not allowed. There are

also no instances of programs.

If a POU has called a program and if thereby the values of the program have been changed, these
changes will be retained until the program gets called again, even if it will be called from within

another POU. Regard that this is different from calling a function block, where only the values in the

2. Concepts and Basic Components

 18

given instance of the function block are changed and so the changes only are of effect when the same

instance will be called again.

If you want to set input and/or output parameters in the course of a program call, you can do this in
text language editors (e.g. ST) by assigning values to the parameters after the program name in

parentheses. For input parameters this assignment takes place using ":=" just as with the initialization

of variables at the declaration position, for output parameters "=>" is to be used. See for an example
below.

If the program is inserted via Input Assistant with option Insert With Arguments in the

implementation window of a text language editor, it will be displayed automatically according to this

syntax with all parameters. However you not necessarily must assign these parameters.

Examples for program calls in IL:

Assigning the parameters (Input Assistant With Arguments, see above):

Example in ST:

PRGEXAMPLE();

ERG := PRGEXAMPLE.OUT_VAR;

Assigning parameters (Input Assistant With Arguments):

PRGEXAMPLE (in_var:=33, out_var=>erg);

NOTE: Brackets are obligatory.

Example in FBD:

Function

A function is a POU, which yields exactly one data element (which can consist of several elements,

such as fields or structures) when it is processed, and whose call in textual languages can occur as an

operator in expressions.

A function POU can be added to the project via command Add Object and Add POU. To assign the
function to an existing application, select the application entry in the Devices view and use the

command from the context menu. Otherwise it will be added to the POUs view. In the Add POU

dialog choose type Function, enter a name (<function name>) and a return data type (<data type>)
for the new function and choose the desired implementation language. After confirming the settings

with button Open the editor window for the new function will open and you can start editing.

Declaration:

A function declaration begins with the keyword FUNCTION. A name and a data type must be

defined.

Syntax:

2. Concepts and Basic Components

 19

FUNCTION < FUNCTION NAME> : <DATA TYPE>

This is followed by the variable declarations of input and function variables.

A result must be assigned to a function. That is that the function name is used as an output variable.

NOTE: If a local variable is declared as RETAIN in a function, this is without any effect. The
variable will not be written to the Retain area.

Example of a function in ST:

FUNCTION FCT : INT

VAR_INPUT

IVAR1:INT;

IVAR2:INT;

IVAR3:INT;

END_VAR

FCT:=IVAR1+IVAR2*IVAR3;

This function takes three input variables and returns the product of the second two added to the first

one.

Function Call

The call of a function in ST can appear as an operand in expressions.

In IL a function call only can be positioned within actions of a step or within a transition.

Functions (in contrast to a program or function block) contain no internal state information, that is,
invocation of a function with the same arguments (input parameters) always will yield the same

values (output). For that reason functions may not contain global variables and addresses.

Examples of function calls:

In IL:

In ST:

RESULT := FCT1(5, 3, 22);

In FBD:

In function calls it is no longer possible to mix explicit parameter assignment with implicit ones. This

allows changing the order of parameter input assignments.

Example:

FUN(FORMAL1 := ACTUAL1, ACTUAL2); // -> Error Message

FUN(FORMAL2 := ACTUAL2, FORMAL1 := ACTUAL1); // Same Semantics As The:

FUN(FORMAL1 := ACTUAL1, FORMAL2 := ACTUAL2);

According to the IEC 61131-3 standard, functions can have additional outputs. Those must be
assigned in the call of the function, for example in ST according to syntax:

OUT1 => <OUTPUT VARIABLE 1> | OUT2 => < OUTPUT VARIABLE 2> | ... FURTHER

OUTPUT VARIABLES

2. Concepts and Basic Components

 20

Example:

Function fun is defined with two input variables in1 and in2. The return value of fun will be written

to the locally declared output variables (VAR_OUTPUT) loc1 and loc2.

FUN(IN1 := 1, IN2 := 2, OUT1 => LOC1, OUT2 => LOC2);

Function Block

A function block is a POU which provides one or more values during the processing of a PLC

program. As opposed to a function, the values of the output variables and the necessary internal

variables shall persist from one execution of the function block to the next. So invocation of a
function block with the same arguments (input parameters) need not always yield the same output

values.

In addition to the functionality described by standard IEC 61131-3 object oriented programming will
be supported and function blocks can be defined as extensions of other functions. This means that

"inheritance" can be used when programming with function blocks.

A function block always is called via an instance, which is a reproduction (copy) of the function

block.

A function block can be added to the project via command Add Object / POU. To assign the function

block to an existing application, select the application entry in the Devices view and use the

command from the context menu. Otherwise it will be added to the POUs view.

In the Add object dialog choose type Function Block, enter a function block name (<identifier>) and

choose the desired implementation language.

Additionally the following options may be set:

 Extends: Enter here the name of another function block available in the project, which should be

the base for the current one.

 Implements: Not supported

After having confirmed the settings with button Open the editor window for the new function block

will open and you can start editing.

Declaration:

Syntax:

FUNCTION_BLOCK <FUNCTION BLOCK NAME> | EXTENDS <FUNCTION BLOCK NAME>

This is followed by the declaration of the variables.

NOTE: FUNCTION BLOCK is no longer a valid alternative keyword.

Example:

FBexample shown in the following picture has two input variables and two output variables out1 and

out2. Out1 is the sum of the two inputs, out2 is the result of a comparison for equality.

Example of a function block in ST:

FUNCTION_BLOCK FBEXAMPLE

VAR_INPUT

INP1:INT;

INP2:INT;

END_VAR

VAR_OUTPUT

OUT1:INT;

OUT2:BOOL;

END_VAR

OUT1:=INP1+INP2;

OUT2:= INP1=INP2;

2. Concepts and Basic Components

 21

Function Block Instance

Function blocks are always called through an instance which is a reproduction (copy) of a function

block.

Each instance has its own identifier (instance name), and a data structure containing its inputs,

outputs, and internal variables.

Instances like variables are declared locally or globally, whereby the name of the function block is
indicated as the data type of an identifier.

Syntax for declaring a function block instance:

<IDENTIFIER>:<FUNCTION BLOCK NAME>;

Example:

Declaration (e.g. in the declaration part of a program) of instance INSTANCE of function block
FUB:

INSTANCE: FUB;

The declaration parts of function blocks and programs can contain instance declarations. But:

Instance declarations are not permitted in functions.

Calling a Function Block

Function blocks are always called through a function block instance. Thus a function block instance
must be declared locally or globally.

The desired function block variable can be accessed using the following syntax:

Syntax:

<INSTANCE NAME>.<VARIABLE NAME>

Regard the following:

 Only the input and output variables of a function block can be accessed from outside of a

function block instance, not its internal variables

 Access to a function block instance is limited to the POU in which it was declared unless it was

declared globally

 At calling the instance the desired values can be assigned to the function block parameters. See

below

 The InOutVariables (VAR_IN_OUT) of a function block are passed as pointers

 In SFC function block calls can only take place in steps

 The instance name of a function block instance can be used as an input parameter for a function

or another function block

 All values of a function block are retained until the next processing of the function block.

Therefore function block calls do not always return the same output values, even if done with

identic arguments

NOTE: If there at least one of the function block variables is a remanent variable, the total instance
is stored in the retain data area.

Examples for accessing function block variables.

Assume: function block “fb” has an input variable “in1” of the type INT. See here the call of this

variable from within program prog.

Declaration and implementation in ST:

PROGRAM PROG

VAR

INST1:FB;

2. Concepts and Basic Components

 22

RES:INT;

END_VAR

INST1.IN1:=22; (* fb is called and input variable in1 gets assigned value

22 *)

INST1(); (* fb is called, this is needed for the following access on the

output variable *)

RES:=FBINST.OUTL; (* output variable of fb is read *)

Example in FBD:

Assigning Parameters at Call

In the text languages IL and ST you can set input and/or output parameters immediately when calling

the function block. The values can be assigned to the parameters in parentheses after the instance
name of the function block. For input parameters this assignment takes place using ":=" just as with

the initialization of variables at the declaration position, for output parameters "=>" is to be used.

In this example a timer function block (instance CMD_TMR) is called with assignments for the

parameters IN and PT. Then the result variable Q is assigned to the variable A. The result variable is
addressed with the name of the function block instance, a following point, and the name of the

variable:

CMD_TMR(IN := %IX5.0, PT := 300);

A:=CMD_TMR.Q

If the instance is inserted via Input Assistant (<F2>) with option Insert With Arguments in the

implementation window of a ST or IL POU, it will be displayed automatically according to the
syntax showed in the following example with all of its parameters. But you not necessarily must

assign these parameters. For the above mentioned example the call would be displayed as follows:

Example, insert via Input Assistant with arguments:

CMD_TMR(in:=, pt:=, q=>)

->

CMD_TMR(in:=bvar, pt:=t#200ms, q=>bres);

Extension of a Function Block

Supporting object orientated programming a function block can be derived from another function

block. This means a function block can extend another, thus automatically getting the properties of
the basing function block in addition to its own.

The extension is done by using the keyword EXTENDS in the declaration of a function block. You

can choose the "extends" option already during adding a function block to the project via the Add
Object dialog.

Syntax:

FUNCTION_BLOCK <function block name> EXTENDS <function block name>

This is followed by the declaration of the variables.

Example of definition of function block fbA:

FUNCTION_BLOCK fbA

VAR_INPUT

x:int;

...

Definition of function block fbB:

2. Concepts and Basic Components

 23

FUNCTION_BLOCK fbB EXTENDS fbA

VAR_INPUT

ivar:int;

...

In the above example:

 FbB does contain all data and methods which are defined by fbA. An instance of fbB can now be

used in any context were a function block of type fbA is expected

 FbB is allowed to override the methods defined in fbA. That means: fbB can declare a method

with the same name and the same inputs and output as declared by A

 FbB is not allowed to use function block variables with the same name as used in fbA. In this

case the compiler will prompt an error

 FbA variables and methods can be accessed directly within an fbB-Scope by using the keyword

SUPER (SUPER^.<method>)

NOTE: Multiple inheritances are not allowed, i.e. it’s not possible to extend a Function Block more
than once.

Method Invocation

Object oriented programming with function blocks is - besides of the possibility of extension via

EXTENDS. This requires dynamically resolved method invocations, also called "virtual function

calls".

See Method for further information on Method.

Virtual function calls need some more time than normal function calls and are used when:

 A call is performed via a pointer to a function block (pfub^.method)

 A method calls another method of the same function block

Virtual function calls make possible that the same call in a program source code will invoke different

methods during runtime.

According to the IEC 61131-3 standard, methods like normal functions can have additional outputs.

Those must be assigned in the method call according to syntax:

<METHOD>(IN1:=<VALUE> |, FURTHER INPUT ASSIGNMENTS, OUT1 => <OUTPUT

VARIABLE 1> | OUT2 => < OUTPUT VARIABLE 2> | ... FURTHER OUTPUT

ASSIGNMENTS)

This effects that the output of the method is written to the locally declared output variables as given

within the call.

Example:

Assume that function blocks fub1 and fub2 EXTEND function block fubbase. Method method1 is
contained.

Possible use of the method calls:

VAR_INPUT

B : BOOL;

END_VAR

VAR

PINST : POINTER TO FUBBASE;

INSTBASE : FUBBASE;

INST1 : FUB1;

INST2 : FUB2;

END_VAR

IF B THEN

PINST := ADR(INSTBASE);

ELSE

PINST := ADR(INST1);

2. Concepts and Basic Components

 24

END_IF

PINST^.METHOD1(); (* If B is true, FUBBASE.METHOD1 is called, else

FUB1.METHOD1 is called *)

Now assume that fubbase of the upper example contains two methods method1 and method2. fub1

overrides method2 but not method1. method1 is called like shown in the upper example:

PINST^.METHOD1(); (*If B is true FUBBASE.METHOD1 is called, else

FUB1.METHOD1 is called*)

Call via pointers - method1 implementation:

METHOD METHOD1 : BOOL

VAR_INPUT

END_VAR

METHOD1 := METHOD2();

For calling fubbase.method1 via pointers the following is true:

 If THIS is of type fubbase, fubbase.method2 will be called

 If THIS is of type fub1, fub1.method2 will be called

Data Type Unit

Along with the standard data types the user can define own data types. Structures, enumeration types
and references can be created as Data Type Units (DUTs) in a DUT editor.

A DUT () object can be added to the project via the Add Object command. To assign it to an

existing application, first select the application entry in the Devices view. Otherwise it will be added

to the POUs view. In the Add DUT dialog enter a name for the new data type unit and choose the
desired type Structure, Enumeration, Alias or Union.

In case of type Structure you might utilize the principle of inheritance, thus supporting object

oriented programming. Optionally you can specify that the DUT should extend another DUT, which
is already defined within the project. This means that the definitions of the extended DUT will be

automatically valid within the current one. For this purpose activate option Extends: and enter the

name of the other DUT.

After confirming the settings with button Open the editor window for the new DUT will open and
you can start editing.

Syntax for declaration of a DUT:

TYPE <IDENTIFIER> : <DUT COMPONENTS DECLARATION>

END_TYPE

The DUT components declaration depends on the type of DUT, e.g. a structure or an enumeration.

Example:

See in the following two DUTS, defining structures struct1 and struct2; struct2 extends struct1,

which means that you can use struct2.a in your implementation to access variable a.

TYPE struct1 :

STRUCT

A:INT;

B:BOOL;

END_STRUCT

END_TYPE

TYPE struct2 EXTENDS struct1 :

STRUCT

C:DWORD;

D:STRING;

END_STRUCT

END_TYPE

2. Concepts and Basic Components

 25

Method

NOTE: This functionality is only available if supported by the currently used feature set.

Supporting object oriented programming, Methods () can be used to describe a sequence of

instructions. Like a function a method is not an independent POU, but must be assigned to a function

block. It can be regarded as a function which contains an instance of the respective function block.

Inserting Methods

To assign a method to a function block, select the appropriate function block entry in the POUs or

Device tree and in the context menu use Add Object / Method. In the Add Method dialog enter a

name, the desired return type and the implementation language. For choosing the return data type you

can use the button to get the Input Assistant dialog. After having confirmed the settings via Open
the method editor view will be opened.

Declaration

Syntax:

METHOD <METHOD NAME> : <DATA TYPE>

VAR_INPUT

X: INT;

END_VAR

Method Call

Method calls are also named virtual function calls. Please see: Method Invocation.

NOTES:
- All data of a method is temporary and only valid during the execution of the method (stack
variables).
- In the body of a method access to the function block instance variables is allowed.
- THIS Pointer: You can use identifier THIS to point directly to the implicit function block instance,
which is available automatically. Notice that a locally declared variable might hide a function block
variable. So in case of the example shown above in the syntax description THIS^.x would not refer
to the methods input x, but to the function block variable x VAR_IN_OUT or VAR_TEMP-
variables of the function block cannot be accessed in a method.
-Methods, like functions, can have additional outputs. Those must be assigned during method
invocation.

Special Methods for a Function Block

 Init Method: A method named FB_Init always is declared implicitly, but also can be declared

explicitly. It contains initialization code for the function block as declared in the declaration part
of the function block. See: FB_Init

 Reinit Method: If a method named FB_Reinit is declared for a function block instance, it will be

called after the instance has been copied and will reinitialize the new instance module. See:

FB_Reinit

 Exit Method: If an exit method named FB_Exit is desired (for example for deallocating any, it

must be declared explicitly. There is no implicit declaration. The exit method will be called for

each instance of the function block before a new download, a reset or during online change for

all moved or deleted instances. See: FB_Exit

 Properties: Set and Get methods; see: Property

Method Call also (Application is Stopped)

In the device description file it can be defined that a certain method should always be called task-

cyclically by a certain function block instance (of a library module). If this method has the following

input parameters, it will be processed also when the active application currently is not running.

2. Concepts and Basic Components

 26

VAR_INPUT

pTaskInfo : POINTER TO DWORD;

pApplicationInfo: POINTER TO _IMPLICIT_APPLICATION_INFO;

END_VAR

The programmer now can check the application status via pApplicationInfo, and define what should

happen.

Example:

IF PAPPLICATIONINFO^.STATE=RUNNING THEN <INSTRUCTIONS> END_IF

Property

NOTE: This functionality is only available if supported by the currently used feature set.

A Property () is an object type, which can be inserted below a program or function block via

command Add object / Property from the context menu. In the Add Property dialog the name, return

type and desired implementation language have to be specified.

A property contains two special methods which will be inserted automatically in the objects tree
below the property object:

 The Set method is called when the property is written, that is the name of the property is used as

input

 The Get method is called when the property is read, that is the name of the property is used as

output

Example: Function block FB1 uses a local variable MILLI. This variable is determined by the

properties Get and Set:

Code on property Get:

SECONDS := MILLI / 1000;

Code on property Set:

 MILLI := SECONDS * 1000;

You can write the property of the function block (Set method) for example by fbinst.seconds := 22;
(fbinst is the instance of FB1) or you can read the property of the function block (Get method) for

example by testvar := fbinst.seconds;.

Figure 2-3. Property "Seconds" Added to Function Block Fb

A property can have additional local variables but no additional inputs and - in contrast to a function

or method - no additional outputs.

Monitoring a Property

A property may be monitored in online mode either with help of Online Monitoring or with help of a

Watch List. The condition precedent to monitoring a property is the addition of the pragma {attribute

'monitoring':='variable'} on top of its definition.

2. Concepts and Basic Components

 27

Action

Actions () can be defined and assigned to function blocks and programs using the command Add

Object. An action is an additional implementation which can be created in a different language than

the "basic" implementation is. Each action is given a name.

An action works with the data of the function block or program which it belongs to. It uses the

input/output variables and local variables defined there and does not contain own declarations.

Figure 2-4. Example of an Action of a Function Block

In this example each call of the function block FB1 will increase or decrease the output variable Out,

depending on the value of the input variable “in”. Calling action Reset of the function block will set
the output variable Out to zero. The same variable Out is written in both cases.

An action can be added via command Add Object / Action when the respective program or function

block object is selected in the Devices or POUs tree. In the Add Action dialog define the action name
and desired implementation language.

Calling an Action

An action is called with:

<PROGRAM_NAME>.<ACTION_NAME > OU <INSTANCE_NAME>.<ACTION_NAME>.

Regard the notation in FBD (see example below).

If it is required to call the action within its own block, i.e. in the program or function block it belongs

to, it is sufficient to just use the action name.

Examples for the call of the above described action from another POU:

Declaration for all examples:

PROGRAM MAINPRG

VAR

 INST : COUNTER;

END_VAR

Call of action Reset in another POU, which is programmed in IL:

CAL INST.RESET(IN := FALSE)

LD INST.OUT

ST ERG

Call of action Reset in another POU, which is programmed in ST:

INST.RESET(IN := FALSE);

2. Concepts and Basic Components

 28

ERG := INST.OUT;

Call of action Reset in another POU, which is programmed in FBD:

NOTE: The IEC standard does not recognize actions other than actions of the sequential function
chart (SFC). In there, actions are an essential part, containing the instructions to be processed at the
particular steps of the chart.

External Function, Function Block, Method

For an external function, function block or method no code will be generated by the programming

system.

Perform the following steps to create an external POU:

 Add the desired POU object in the POUs view of your project like any internal object and define

the respective input and output variables

NOTE: Local variables must be defined in external function blocks, but may not be defined in
external functions or methods. Also notice that VAR_STAT variables cannot be used in the runtime
system.

In the runtime system an equivalent function, function block or method must be implemented. At a
program download for each external POU the equivalent will be searched in the runtime system and -

if found - will be linked.

Global Variable List - GVL

A () Global Variables List (GVL) is used to declare global variables. If a GVL is placed in the

POUs view, the variables will be available all over the project, if a GVL is assigned to a certain

application, the variables will be valid within this application.

A GVL can be added via command Add Object and Add Global Variable List. To assign it to an
existing application, choose the command from the context menu while the application is selected in

the device tree. Otherwise the new GVL object will be added to the POUs view.

The GVL editor is used to edit a Global Variable List.

If the target system supports the network functionality, the variables contained in a GVL can be
defined to be available as network variables, i.e. for a broadcast data exchange with other devices in

the network. For this purpose appropriate network properties must be configured for the GVL.

Regard that variables declared in GVLs always get initialized before local variables of POUs.

Persistent Variables

This object is a global variables list, which however only contains persistent variables of an
application. Thus it must be assigned to an application and for this purpose be inserted in the device

tree via the Add Object dialog below this application.

Persistent variables only get re-initialized at a Reset Origin. For further information please see the
Remanent Variables.

A persistent variables list is edited in the GVL Editor, whereby VAR_GLOBAL PERSISTENT

RETAIN already is preset in the first line.

2. Concepts and Basic Components

 29

Figure 2-5. Persistent Variable List

External File

Any external file can be added to the POUs view of a project via the Add Object command. In the

Add object dialog choose object type External File ().

Press button for getting the dialog for browsing for a file, the path of which will be entered to the
field below File path. In the field below Name automatically the name of the chosen file will be
entered without extension. You can edit this field to define another name for the file under which it

should be handled within the project.

Select one of the following options.

 Remember the link: The file will be available in the project only if it is available in the defined

link path

 Remember the link and embed into project: A copy of the file will be stored internally in the

project but also the link to the external file will be remembered. If the external file is linked to

the project, you can additionally select one of the options

o Reload the file automatically: The file will be updated within the project as soon as it has been
changed externally

o Prompt whether to reload the file: A dialog will pop up as soon as the file has been changed

externally. You can decide whether the file should be updated also within the project
o Do nothing: The file will remain unchanged within the project, even when it is changed

externally

 Embed into project: Just a copy of the file will be stored in the project. There will be no further

connection to the external file

On this dialog have the button Display file properties..., it opens the standard dialog for the properties
of a file, which also appears when you select the file object in the POUs window and use command

2. Concepts and Basic Components

 30

Properties. The dialog i.e. contains a tab External file where the properties which have been set in the

Add Object dialog, can be viewed and modified.

POUs for Implicit Checks

Below an application you might add special POUs, which must be available there, if the implicitly

provided check functionality for array and range boundaries, divisions by zero and pointers during

runtime should be used.

For this purpose the Add Object menu in category POUs for Implicit Checks () presents the

following functions:

 CheckBounds

 CheckDivDInt

 CheckDivLInt

 CheckDivReal

 CheckDivLReal

 CheckRangeSigned

 CheckRangeUnsigned

 CheckPointer

After having inserted a check POU, it will be opened in the editor corresponding to the

implementation language selected. A default implementation that might be adapted to your
requirements is available in the ST editor.

After having inserted a certain check POU, the option will not be available in the dialog any longer,

thus avoiding a double insertion. If all types of check POUs have already been added below the

application, the Add Object dialog at all will not provide the POUs for Implicit Checks category any
longer.

NOTE: Do not modify the declaration part of an implicit check function, in order to maintain the
check functionality.

Library Management

Libraries can provide functions and function blocks as well as data types, global variables and even

visualizations which can be used in the project just like the other POUs and variables which are

defined directly within the project.

The default extension for a library file is .library.

The management of the libraries in a project is done in the Library Manager (), the preceding

installation on the system in the Library Repository dialog.

NOTE: The Library Repository dialog is only available if predefined feature sets chosen by the user
are Professional or the option Enable repository dialog is enabled. For further information about
features, see Features in the MasterTool IEC XE User Manual - MU299609.

The project functions for local and global search and replace also work for included libraries.

See general information on:

 Installation and Including in project

 Referenced Libraries

 Library Versions

 Unique access to library modules or variables

 Creating libraries, Encoding, Documentation MasterTool IEC XE

 Internal and external library modules

2. Concepts and Basic Components

 31

Installing and Including on Project

 Libraries can be managed on the local system in one or various repositories (folders, locations).

A library cannot be included in a project before it has got installed in a repository on the local

system. The installation is to be done in the Library Repository dialog

 As a precondition for installation, a library must have got assigned a title, a version info and a

company name in its Project Information. Optionally a category can be defined which might

serve later for sorting in the Library Manager

 If no category assignment is defined in the Project Information, the library automatically will

belong to category Miscellaneous. Further categories might be defined in one or several xml-files
*.libcat.xml which can be loaded in the Project Information dialog in order to select one of the

categories. Please see also below, Creating Libraries, Encoding, Documentation

 The Library Manager is used to include libraries in a project. In a MasterTool Standard Project a

Library Manager object by default is automatically assigned to the default device. However a

Library Manager object can also be added explicitly in the Devices or POUs view window. This
is to be done like for other objects with the Add Object dialog. Libraries referenced in other

libraries by default are also displayed in the Library Manager, however also hidden libraries are

possible, see below, Referenced Libraries

 If the .library* file is available (and not only its compiled version *.compiled-library), the POUs

of the related library may be opened by a double click on their referencing within the library

manager

 If a library module is called by an application, all libraries and repositories will be searched in

that order which is defined in the Library Repository dialog. See below for unique accessing

Referenced Libraries

 Libraries can include further libraries (referenced libraries), whereby the nesting can have any

desired depth. When you add a library including other libraries in the library manager, the

referenced libraries will be added automatically too

 When creating a library project which includes other libraries, in the Properties of each

referenced library it can be defined, how it should behave later when getting inserted in a project
with its father library

 Its pure visibility in the Library Manager, indented below the father library, can be deactivated.

Thus hidden libraries can be available in a project

 If you are just creating a pure container library, that is a library projects which is not defining

own modules, but only is referencing other libraries, the access on the modules of these libraries
can be simplified. A container library is created because you want to include a complete set of

libraries in a project at the same time by just including the container library. In this case it might

be desired to simplify the access on the modules of these libraries by making them top-level
libraries, which allows leaving out the namespace of the container library in the access path. This

can be reached by activating option Publish.... However this option should really only be

activated when creating a container library and should be handled with great caution

Library Versions

 Multiple versions of the same library can be installed on the system

 Multiple versions of the same library can be included in a project. It is regulated like described in

the following, which version of a library an application will use:

o If multiple versions are available on the same level within the same manager, it will depend

on the current library properties, which version will be accessed (a defined one or always the
newest)

o If multiple versions of the same library are available on different levels within the same

manager (which is the case for referenced libraries), unique access to the library modules or

variables is reached by adding the appropriate namespace (see the following paragraph)

2. Concepts and Basic Components

 32

Unique Access to Library Modules or Variables

 Basically, if there are several modules or variables with the same name within a project, the

access on a module component must be unique, otherwise compile errors will be detected. This

applies for local project modules or variables as well as those which are available in included
libraries and in libraries referenced by the included ones. The uniqueness is reached in such cases

by prefixing the module name by the appropriate library namespace

 The default namespace of a library is defined in the library properties. If it is not defined

explicitly, it will equate with the library name. However, when creating a library project, also a
different standard namespace can be specified in the Properties dialog. Later, when the library

has got included in a project, the namespace always can be modified locally by the user, again in

the Properties dialog

Examples: Assume that for the following examples the namespace of library Lib1 is specified in the
library properties to be Lib1. See in the right column the use of the namespaces for unique access on

variable var 1 which is defined in the modules module1 and POU1.

 Variable var1 is available at the following

locations

Access on var1 via using the appropriate

namespace path

1 In library Lib1 in the global Library Manager

in the POUs window.

Lib1.module1.var1

2 In library Lib1 in the Library Manager below
Application App1 of Device Dev1 in the

Devices window.

Dev1.App1.Lib1.module1.var1

3 In library Lib1 which is included in library

F_Lib in the global Library Manager in the
POUs window.

By default (option Publish... in the library

Properties is deactivated):
F_Lib.Lib1.module1.var1

If option Publish... was activated, module1
would be treated like a component of a top-

level library. Thus accessing would be
possible by Lib1.module1.var1 or

module1.var1. In the current example this

however would cause compiler errors
because the access path is not unique, see

(1) and (4).

4 In object module1 which is defined in the

POUs window.

module1.var1

5 In object POU1which is defined in the POUs

window.

POUxy.var1

Table 2-1. Unique Access

Creating Libraries, Encoding, Documentation

A MasterTool IEC XE project can be saved as library <project name>.library) and optionally can be
installed at the same time in the System Library Repository. Only the objects managed in the POUs

window will be regarded for a library project. If you pointedly are going to create a library project, it

is recommended to choose template Empty library in the New Project dialog. Notice further on the
following:

 In the Project Information a title and a version and the company must be specified. If the Default

namespace should be another than the library name, this can be defined immediately here.

Additionally it is recommended to specify a category, because these will later serve for sorting

the entries in the Library Repository and Library Manager dialogs. If the library should belong to
another category than the default (Miscellaneous), an appropriate category description must be

loaded, either from a XML-file *.libcat.xml or from another library, which already contains the

information of such a description file. If necessary, a new category description file must be
issued or an existing one must be modified. The information of the selected categories and the

basic category description file will be transferred to the local library project and later, when

installing the library - to the Library Repository. So the categories will be known in the

2. Concepts and Basic Components

 33

repository. If afterwards another library again brings a description file with the same ID but

different content, then the information of the new file will be valid in the repository

 If the library includes further libraries, you should consider, how those referenced libraries

should behave later, when the other library will be included in a project. This concerns version
handling, namespace, visibility and access properties, which can be configured in the properties

dialog of the particular, referenced library. If the library later, when it gets included in a project,

always should reference another, device-specific library, a placeholder can be used when
configuring the reference. If the library modules should be protected against viewing and

accessing, a library project can be saved in encoded in encoded format (<project

name>.compiled-library)

 Data structures of a library can be marked as lib .internal. These non-public objects carry the

attribute 'hide' and therefore do not appear within the library manager, the List Components
functionality or the Input Assistant

 In order to provide the user with information on a library module in an easy way, an appropriate

comment can be added to the declaration of a module parameter. This comment will be displayed

later, when the library is included in a project, on the Documentation tab of the Library Manager.

 The following commands are available by default in the File menu for saving a library project:

o Save Project As...

o Save Project As Compiled Library

o Save Project And Install Into Library Repository

3. Menu Commands

 34

3. Menu Commands

This manual treat only menu commands that make the library management, to see the commands

from other menus see Menu Commands in the MasterTool IEC XE User Manual - MU299609.

Library Manager

This category provides the Library Manager editor commands for the management of the libraries
used in the project.

Library Manager Commands

Provides the commands listed below. They are part of the Libraries menu when the Library Manager
is active.

Available commands:

 Add Library...

 Properties...

 Try to Reload the Library

For general information on the library management in MasterTool IEC XE please see Library
Manager.

Add Library

This command is part of the Libraries menu and the Library Manager editor window.

Activate the command if you want to include libraries via the currently opened Library Manager into
the project. Only libraries which are already installed on your system can be added. Multiple versions

of a library can be included in the project at the same time, within one or multiple library managers.

The command opens the Add Library dialog with its tabs Library and Placeholder (Placeholder
feature is only available with the option Enable repository dialog enabled, for further information see

the item Features in the MasterTool IEC XE User Manual - MU299609).

3. Menu Commands

 35

Sub dialog Library

Figure 3-1. Add Library Dialog (All Versions)

Here all libraries currently installed on your system will be listed. You can filter the display by
setting a certain providing Company from the selection list. All companies will list all available

libraries.

If option Group by Category is activated, the libraries of the currently set company will be listed
according to the available categories, otherwise alphabetically. If the grouping by categories is

activated, the categories appear as nodes and for the currently selected category the libraries (or

further categories) will be displayed indented below.

Choose the desired library. If option Display all versions (for experts only) is activated, all installed

version(s) of the libraries appear(s) indented below the currently selected library entry.

Additionally to the explicit version identifiers each a “*” is available, which means latest version. In

this case you can choose among the versions. By default however this option is deactivated and only
the latest version will be displayed. In this case a multiselection of libraries is possible: Keep the

<SHIFT> key pressed while selecting the desired libraries.

After having confirmed with OK, the selected libraries will be added to the list in the Library
Manager window.

If you want to include a library which is not yet installed on the local system, you might use the

Library Repository button to get to the Library Repository dialog for doing the required installation.

NOTE: The Library Repository dialog is only available if predefined feature sets chosen by the user
are Professional or the option Enable repository dialog is enabled. For further information about
features, see Features in the MasterTool IEC XE User Manual - MU299609.

3. Menu Commands

 36

Sub dialog Placeholder

Figure 3-2. Add Library, Placeholder

NOTE: Placeholder is only available if predefined feature sets chosen by the user are Professional
or the option Enable repository dialog is enabled. For further information about features, see
Features in the MasterTool IEC XE User Manual - MU299609.

The tab Placeholder is dedicated to the following two use cases:

 Creation of a target independent project

 Creation of a library project <library_xy>, which references another library that is meant to be

target-specific, that is device-specific

Placeholder Within Project

If a project shall be designed as compatible for multiple interchangeable target devices, the target
specific libraries have to be included within the library manager of the project via placeholders.

As soon as the target device gets specified, the placeholders will be cast according to the related

device description. Even if no device description is actually available, the placeholders allow the
project to pass a syntactical check.

To include a library into the library manager via a placeholder, the library has to be selected within

the bottom part Default library of sub dialog Placeholder. Thereby it is possible to constrict the
catalogue of proposed libraries according to the providing company.

In addition the placeholder name has to be inserted in the associated edit field. To ensure correct

insertion of the name you might use the selection list offering all placeholder names currently defined

in device descriptions.

Placeholder Within Library Project

If the library project is based on further libraries that are target-specific, that is device-specific, these

libraries have to be included in the library project via placeholders.

3. Menu Commands

 37

This means that instead of specifying one particular library for being included, a placeholder will be

inserted, which will be replaced later, when <library_xy> is used in another project for a certain

device, by the name of a device-specifically defined library. This name must be specified in the
respective device description file, <library_xy> which assigns the placeholder name to a real library

name.

If the library manager for any reason currently is not assigned to a device, the placeholder will be
replaced by the default library specified here in the dialog. (This for example allows compilation of

the currently edited library project without detected errors even if no suitable device description is

available at that moment.)

In the Placeholder Name field enter any string as a name for the placeholder. Further on choose a
default library from the currently installed libraries. This is to be done like described above for

adding a library in the Library sub dialog and like there option Display all versions (for experts only)

might be activated to get displayed all currently installed versions of a library.

After closing the dialog with OK, the placeholder library will be entered in the library manager tree.

When you open the Properties dialog for the library placeholder, you get information on the

currently set default library.

Properties

This command is available in the Library Managereditor window.

It opens the Properties dialog for the library which is currently selected in the Library Manager

window and allows the following settings concerning namespace, version handling, availability and
visibility of library references.

Figure 3-3. Properties Dialog for Library

 Namespace: The current namespace of the library is displayed. By default the namespace of a

library primarily is identic with the library name, except another string has been defined

explicitly in the Project Information when creating the library project. You can edit the
namespace anytime here in the properties dialog. For further information on the namespace of

libraries see the item editor window, see the Library Manager Editor in the MasterTool IEC

XE User Manual – MU299609

 Default library: (only available if option Enable repository dialog is enabled, see Features in

the MasterTool IEC XE User Manual - MU299609) If a library placeholder is currently selected

in the Library Manager, this field will contain the name of the library which should replace the

placeholder, if no device-specific library is available. Please see the correspondent item for
information on library placeholder

 Version: (only available if option Enable repository dialog is enabled, see Features in the

MasterTool IEC XE User Manual - MU299609) Here you can configure, which version of the

library should be used in the project:

3. Menu Commands

 38

o Specific version: Exactly the version entered here (you can select from the list) will be used

o Newest version always: Always the newest version found in the library repository will be

used, that is the modules actually used might change because a newer version of the library is
available

 Visibility: (only available if option Enable repository dialog is enabled, see Features in the

MasterTool IEC XE User Manual - MU299609) These settings are of interest as soon as the

library gets included that is referenced by another library. Per default they are deactivated

o Publish all IEC symbols to that project as if this reference would have been included

there directly: As long as this option is deactivated, the components of the current library -

if referenced by another one - can be accessed uniquely by using the appropriate namespace

path (composed of the namespaces of the "father" library and its own namespace in addition
to the modules and variable identifier)

o Hide this reference in the dependency tree: If this option gets activated, the current library

will not be displayed later, when its father library is included in a project. This allows to
include hidden libraries, however needs careful use, because in case of library error messages

you might have problems to find the causing library

NOTE: The option Publish all IEC symbols to that project as if this reference would have been
included there directly should only be activated, if you want to use "container libraries", not
containing own modules, but just including other libraries for the purpose of "packaging" them. This
packaging for example allows to include multiple libraries in a project at once just by including the
"container library". In this case however it might be desired to get the particular libraries on top-
level of the projects' Library Manager, because then the modules can be accessed directly, that is the
namespace of the container library can be left out.

Try to Reload the Library

This command is part of the Libraries menu and the Library Manager editor window.

If a library included in a project is for any reason not available at the defined path when opening the

project in the programming system, an appropriate message will be generated. After having checked

the error and correctly made available the library again, use the Try to Reload Library command

when the library entry is selected in the Library Manager. Thus the library can be reloaded without
the necessity of leaving the project.

4. Programming Reference

 39

4. Programming Reference

Declaration

The variables of a project are to be declared manually in the declaration editor or via the Auto

Declare dialog. See the further related help pages referring for example on the various categories of

variables (local, global, input, output etc.), the initialization, the use of pragmas, init method etc.

Variables Declaration

The declaration of a variable can be done in the declaration part of a POU or via the Auto Declare

dialog, as well as in a DUT or GVL editor.

The sort (in the declaration dialog it is named scope) of the variable(s) to be declared is specified by

the keywords embracing the declaration of one or several variables. The common variable

declaration for example is embraced by VAR and END_VAR.

VAR_INPUT

VAR_OUTPUT

VAR_IN_OUT

VAR_GLOBAL

VAR_TEMP

VAR_STAT

VAR_EXTERNAL

VAR_CONFIG

The variable type keywords may be supplemented by attribute keywords, like for example RETAIN

(VAR_INPUT RETAIN).

The declaration of a variable must match the following rules:

Syntax:

<IDENTIFIER> {AT <ADDRESS>}:<TYPE> {:=<INITIALIZATION>};

The parts in braces ({}) are optional.

The identifier is the name of a variable. The items listed in the following in each case must be

regarded when defining an identifier, but please also consider to follow some recommendations
which are given in Recommendations on the Naming of the Identifiers.

 It must not contain spaces or special characters

 It is not case-sensitive, which means that for example VAR1, Var1 and var1 are all the same

variable

 The underscore character is recognized in identifiers (for example, A_BCD and AB_CD are

considered two different identifiers), but an identifier must not have more than one underscore
character in a row

 The length of the identifier as well as the meaningful part of it, are unlimited

 The rules listed in the following text box concerning multiple uses must be regarded

Multiple Use of Identifiers (Namespaces)

An identifier must not be used duplicate locally and must not be identical to any keyword.

Globally an identifier can be used multiple times, thus a local variable can have the same name as a

global one. Within a POU in this case the local variable will have priority.

A variable defined in a Global Variables List can have the same name as a variable defined in

another Global Variables List. In this context notice the following IEC 61131-3 extending features:

4. Programming Reference

 40

 Global scope operator: An instance path starting with “.” opens a global scope. So, if there is a

local variable, for example, ivar, with the same name as a global variable, .ivar refers to the

global variable

 The name of a global variables list can be used as a namespace for the included variables. So

variables can be declared with the same name in different global variable lists and can be
accessed specifically by preceding the variable name with the list name. Example:

GLOBLIST1.IVAR := GLOBLIST2.IVAR; (*IVAR from GLOBLIST2 is copied to IVAR

in GLOBLIST1 *)

 Variables defined in a Global Variables List of an included library can be accessed according to

syntax <Library Namespace>.<Name of Global Variables List>.<Variable>. See below for

namespaces of libraries. Example:

GLOBLIST1.IVAR := LIB1.GLOBLIST1.IVAR (*IVAR from GLOBLIST1 in library

LIB1 is copied to IVAR in GLOBLIST1 *)

For a library also a namespace is defined, when it gets included via the Library Manager. So you can

access a library module or variable by <Library Namespace>.<Modulename | Variablename>. Notice

that in case of nested libraries the namespaces of all libraries concerned have to been stated
successively. Example: If Lib1 was referenced by Lib0, the module fun being part of Lib1 is

accessed by Lib0.Lib1.fun:

IVAR := LIB0.LIB1.FUN(4, 5); (* return value of FUN is copied to variable

IVAR in project *)

As far as the checkbox Publish all IEC Symbols to that project as if this reference would have been

included there directly has been activated within the properties of the referenced library Lib, the

module fun may also be accessed directly via Lib0.fun.

AT <Address>

The variable can directly be linked to a definite address using the keyword AT.

In function blocks you can also specify variables with incomplete address statements. In order that
such a variable can be used in a local instance, there must be an entry for it in the variable

configuration.

Type

Valid data type, optionally extended by a “:=<initialization>”.

Optionally pragma instructions can be added in the declaration part of an object, in order to affect the

code generation for various purposes.

NOTE: Pay attention to the possibility of an automatic declaration. For faster input of the
declarations, use the shortcut mode.

Recommendations on the Naming of the Identifiers

Identifiers are defined at the declaration of variables (variable names), user-defined data types and at
the creation of POUs (functions, function blocks, programs). In addition to the items to be regarded

anyway when defining an identifier you might consider to follow some recommendations in order to

make the naming as unique as possible.

Variable Names

The naming of variables in applications and libraries as far as possible should follow the Hungarian

notation.

For each variable a meaningful, short description should be found, the base name.

The first letter of each word of a base name should be a capital letter, the others should be small ones

(Example: FileSize).

4. Programming Reference

 41

Before the base name, corresponding to the data type of the variable, prefix(es) are added in small

letters.

See in the following table some information and the recommended prefixes on the particular data
types:

Data type Lower limit Upper limit Information

content

Prefix Comment

BIT 0 1 1 Bit b

BOOL FALSE TRUE 1 Bit x

BYTE 8 Bits by Bit string, not for arithm.
operations

WORD 16 Bits w Bit string, not for arithm.
operations

DWORD 32 Bits dw Bit string, not for arithm.

operations

LWORD 64 Bits lw Not for arithm.

operations

SINT -128 127 8 Bits si

USINT 0 255 8 Bits usi

INT -32.768 32.767 16 Bits i

UINT 0 65.535 16 Bits ui

DINT -2.147.483.648 2.147.483.647 32 Bits di

UDINT 0 4.294.967.295 32 Bits udi

LINT -2
63

 2
63

- 1 64 Bits li

ULINT 0 2
64

- 1 64 Bits uli

REAL 32 Bits r

LREAL 64 Bits lr

STRING s

TIME tim

TIME_OF_DAY tod

DATE_AND_TIME dt

DATE date

ENUM 16 Bits e

POINTER p

ARRAY a

Table 4-1. Data Types

Note:

x: Pointedly for Boolean variables x is chosen as prefix, in order to differentiate from BYTE and also
in order to accommodate the perception of an IEC-programmer (see addressing "%IX0.0").

Examples:

SubIndex: BYTE;

sFileName: STRING;

udiCounter: UDINT;

In nested declarations the prefixes are attached to each other in the order of the declarations:

Example:

pabyTelegramData: POINTER TO ARRAY [0..7] OF BYTE;

Function block instances and variables of user-defined data types as a prefix get a shortcut for the

FB- and data type name (for example: sdo).

Example:

cansdoReceivedTelegram: CAN_SDOTelegram;

4. Programming Reference

 42

TYPE CAN_SDOTelegram : (* Prefix: sdo *)

STRUCT

wIndex:WORD;

bySubIndex:BYTE;

byLen:BYTE;

aby: ARRAY [0..3] OF BYTE;

END_STRUCT

END_TYPE

Local constants (c) start with prefix “c” and an attached underscore, followed by the type prefix and

the variable name.

Example:

VAR CONSTANT

c_uiSyncID: UINT := 16#80;

END_VAR

For global variables (g) and global constants (gc) an additional prefix + underscore are attached to
the library prefix:

Examples:

VAR_GLOBAL

CAN_g_iTest: INT;

END_VAR

VAR_GLOBAL CONSTANT

CAN_gc_dwExample: DWORD;

END_VAR

Variable Names in MasterTool IEC XE Libraries

Basically see above Variable Names, with the following exception: global variables and constants
do not need a library prefix, because using the namespace takes the function of a prefix.

Example:

g_iTest: INT; (* Declaration *)

CAN.g_iTest (* Implementation: call in an application program *)

User Defined Data Types (DUT)

Structure: The name of each structure data type consists of a library prefix (Example: CAN), an

underscore and a preferably short expressive description (for example: SDOTelegram) of the
structure. The associated prefix for used variables of this structure should follow directly after the

colon.

Example:

TYPE COM_SDOTelegram : (* Prefix: sdo *)

STRUCT

wIndex:WORD;

bySubIndex:BYTE;

byLen:BYTE;

abyData: ARRAY [0..3] OF BYTE;

END_STRUCT

END_TYPE

Enumerations start with the library prefix (Example: CAL), followed by an underscore and the

identifier in capital letters.

ENUMs should be defined with correct INT values.

Example:

TYPE CAL_Day :(

CAL_MONDAY,

4. Programming Reference

 43

CAL_TUESDAY,

CAL_WEDNESDAY,

CAL_THIRSDAY,

CAL_FRIDAY,

CAL_SATURDAY,

CAL_SUNDAY);

Declaration:

eToday: CAL_Day;

User Defined Data Types (DUTs) in MasterTool IEC XE Libraries

DUT names in MasterTool IEC XE libraries do not get a library prefix, because using the namespace

takes the function of a prefix. Also enumeration components are defined without library prefixes.

Example (in library with namespace CAL):

TYPE Day :(

MONDAY,

TUESDAY,

WEDNESDAY,

THIRSDAY,

FRIDAY,

SATURDAY,

SUNDAY);

Declaration:

eToday: CAL.Day;

Use in application:

IF eToday = CAL.Day.MONDAY THEN

Functions, Function blocks, Programs (POU), Actions

The names of functions, function blocks and programs consist of the library prefix (Example: CAN),

an underscore and an expressive short name (e.g.: SENDTELEGRAM) of the POU. Like with

variables always the first letter of a word of the POU name should be a capital letter, the others
should be small letters. It is recommended to compose the name of the POU of a verb and a

substantive.

FUNCTION_BLOCK Com_SendTelegram (* Prefix: comst *)

In the declaration part a short description of the POU should be provided as a comment. Further on
all inputs and outputs should be provided with comments. In case of function blocks the associated

prefix for set-up instances should follow directly after the name.

Actions get no prefix; just actions which should be called only internally, that is by the POU itself,

start with prv_.

POUs in MasterTool IEC XE Libraries

POU names in MasterTool IEC XE libraries do not get a library prefix, because using the namespace

takes the function of a prefix. For creating method names the same rules apply as for actions.
Possible inputs of a method should get English comments. Also a short description of a method

should be added in its declaration.

Visualization Names

Currently just avoid to name visualization like another object in the project, because this would cause

problems in case of visualization changes.

4. Programming Reference

 44

Variables Initialization

The default-initialization value is 0 for all declarations, but user defined initialization values can be

added in the declaration of each variable and data type.

The user defined initialization is brought about by the assignment operator ":=" and can be any valid

ST expression. Thus constant values as well as other variables or functions can be used to define the

init value. The programmer just has to make sure that a variable used for the initialization of another
variable is already initialized itself.

Examples for valid variable initializations:

VAR

var1:INT := 12; (* Integer variable with initial value of

12 *)

x : INT := 13 + 8; (* Init value defined by an expression

with con constants *)

y : INT := x + fun(4); (* Init value defined by an expression

containing a function call; be aware of the order in this case! *)

z : POINTER TO INT := ADR(y); (* Not described by the IEC61131-3: Init

value defined by an address function; Be careful in this case: the

pointer will not be initialized during online change! *)

END_VAR

See: ARRAYS, Structures, Subrange Types and Arbitrary Expressions For Variable

Initialization.

NOTE: Variables of global variables lists are always initialized before local variables of a POU.

Arbitrary Expressions For Variable Initialization

A variable can be initialized with any valid ST expression. It is possible to access other variables out

of the same scope, and it is possible to call functions. However the programmer has to assure that a

variable used for initialization of another variable is already initialized.

Examples for valid variable initializations:

VAR

x : INT := 13 + 8;

y : INT := x + fun(4);

z : POINTER TO INT := ADR(y); (* Be careful: the pointer will not be

initialized during online change! *)

END_VAR

Declaration Editor

The declaration editor is a text or tabular editor used for the declaration of variables. Usually it is

provided in combination with the language editors.

For detailed information see the Declaration Editor chapter in the MasterTool IEC XE User Manual
– MU299609.

Autodeclaration Dialog

It can be defined in the Options dialog, category Text Editor, that an Auto Declare dialog should
open as soon as a not yet declared string is entered in the implementation part of an editor and the

<ENTER> key is pressed.

This dialog will support the declaration of the variable. The dialog also can be opened explicitly by

command Auto Declare, which by default is available in the Edit menu, or by <SHIFT>+<F2>. If an
already declared variable is selected before, its declaration can be edited in the dialog.

4. Programming Reference

 45

Shortcut Mode

The declaration editor as well as other text editors where declarations are done, supports the shortcut

mode.

This mode is activated when you end a line of declaration with <CTRL>+<ENTER> and allows to use

shortcuts instead of completely typing the declaration.

The following shortcuts are supported:

 All identifiers up to the last identifier of a line will become declaration variable identifiers

 The type of declaration is determined by the last identifier of the line. In this context, the

following will apply:

Identifier Result

B or BOOL Results in BOOL

I or INT Results in INT

R or REAL Results in REAL

S or string Results in STRING

Table 4-2. Declaration Type

 If no type has been established through these rules, automatically BOOL is the type and the last

identifier will not be used as a type

 Every constant, depending on the type of declaration, will turn into an initialization or a string

 An address (as in %MD12) is extended by the AT attribute

 A text after a semicolon (;) becomes a comment

 All other characters in the line are ignored

Example:

Shortcut Declaration

A A: BOOL;

A B I 2 A, B: INT := 2;

ST S 2; string A ST:STRING(2); (* String A *)

X %MD12 R 5 Real number X AT %MD12: REAL := 5.0;(* Real number *)

B ! B: BOOL;

Table 4-3. Shortcut Examples

AT Declaration

In order to link a project variable directly with a definite address you can enter this address in the

declaration of the variable. Regard that the assignment of a variable to an address also can be done in

the mapping dialog of a device in the PLC configuration (device tree).

Syntax:

<Identifier> AT <Address> : <Data type>;

Keyword AT must be followed by a valid address. See the Address help page for further information

and consider possible overlaps in case of byte addressing mode.

This declaration allows to assign a meaningful name to an address. Any changes concerning an
incoming or outgoing signal may only be done in a single place (for example in the declaration).

Notice the following when choosing a variable to be assigned to an address:

 Variables requiring an input cannot be accessed by writing. The compiler intercepts this with

error

4. Programming Reference

 46

 AT declarations only can be used with local or global variables, not however with input and

output variables of POUs

 AT declarations must not be used in combination with VAR RETAIN or VAR PERSISTENT

 If AT declarations are used with structure or function block members, all instances will access

the same memory location, which corresponds to static variables in classic programming

(languages like e.g. C)

 The memory layout of structures is determined by the target too

Examples:

counter_heat7 AT %QX0.0: BOOL;

lightcabinetimpulse AT %IX7.2: BOOL;

download AT %MX2.2: BOOL;

NOTE: If Boolean variables are assigned to a Byte, Word or DWORD address, they occupy one
byte with TRUE or FALSE, not just the first bit after the offset.

Keywords

Keywords are to be written in uppercase letters in all editors.

The following strings are reserved as keywords, i.e. they cannot be used as identifiers for variables or

POUs:

ABS, ACOS, ACTION (only used in the Export Format), ADD, ADR, AND, ARRAY, ASIN, AT,
ATAN, BITADR, BOOL, BY, BYTE, CAL, CALC, CALCN, CASE, CONSTANT, COS, DATE,

DINT, DIV, DO, DT, DWORD, ELSE, ELSIF, END_ACTION (only used in the Export Format),

END_CASE, END_FOR, END_FUNCTION (only used in the Export Format),

END_FUNCTION_BLOCK (only used in the Export Format), END_IF, END_PROGRAM (only
used in the Export Format), END_REPEAT, END_STRUCT, END_TYPE, END_VAR,

END_WHILE, EQ, EXIT, EXP, EXPT, FALSE, FOR, FUNCTION, FUNCTION_BLOCK, GE, GT,

IF, INDEXOF, INT, JMP, JMPC, JMPCN, LD, LDN, LE, LINT, LN, LOG, LREAL, LT, LTIME,
LWORD, MAX, MIN, MOD, MOVE, MUL, MUX, NE, NOT, OF, OR, PARAMS, PERSISTENT,

POINTER, PROGRAM, R, REFERENCE, READ_ONLY, READ_WRITE, REAL, REPEAT, RET,

RETAIN, RETC, RETCN, RETURN, ROL, ROR, S, SEL, SHL, SHR, SIN, SINT, SIZEOF,
SUPER, SQRT, ST, STN, STRING, STRUCT, SUPER, SUB, TAN, THEN, TIME, TO, TOD,

TRUE, TRUNC, TYPE, UDINT, UINT, ULINT, UNTIL, USINT, VAR, VAR_ACCESS, (only used

very specifically, depending on the hardware), VAR_CONFIG, VAR_EXTERNAL,

VAR_GLOBAL, VAR_IN_OUT, VAR_INPUT, VAR_OUTPUT, VAR_STAT, VAR_TEMP,
WHILE, WORD, WSTRING and XOR.

Additionally all conversion operators as listed in the Input Assistant are handled as keywords.

Local Variables VAR

Between the keywords VAR and END_VAR all local variables of a POU are declared. These have

no external connection; in other words, they cannot be written from the outside.

Regard the possibility of adding an attribute to VAR.

Example:

VAR

iLoc1:INT; (* 1. Local variable *)

END_VAR

Input Variables - VAR_INPUT

Between the key words VAR_INPUT and END_VAR all variables are declared that serve as input

variables for a POU. That means that at the call position, the value of the variables can be given

along with a call.

4. Programming Reference

 47

Regard the possibility of adding an attribute to VAR_INPUT.

VAR_INPUT

iIn1:INT (* 1. Input variable *)

END_VAR

Output Variables - VAR_OUTPUT

Between the key words VAR_OUTPUT and END_VAR all variables are declared that serve as

output variables of a POU. That means that these values are carried back to the POU making the call.

There they can be answered and used further.

Regard the possibility of adding an attribute to VAR_OUTPUT.

Example:

VAR_OUTPUT

iOut1:INT; (* 1. Output variable *)

END_VAR

Output Variables in Functions and Methods

According to IEC 61131-3 draft 2, functions (and methods) can have additional outputs. Those must

be assigned in the call of the function like this:

fun(iIn1 := 1, iIn2 := 2, iOut1 => iLoc1, iOut2 => iLoc2);

The return value of the function fun will be written to the e.g. locally declared variables loc1 and
loc2.

Input and Output Variables - VAR_IN_OUT

Between the key words VAR_IN_OUT and END_VAR all variables are declared that serve as input

and output variables for a POU.

NOTE: With variables of this type the value of the transferred variable is changed (transferred as a
pointer, call-by-reference). That means that the input value for such variables cannot be a constant.
For this reason, even the VAR_IN_OUT variables of a function block cannot be read or written
directly from outside via <function block instance><in/output variable>.

Example:

VAR_IN_OUT

iInOut1:INT; (* 1. Input and output variable *)

END_VAR

Global Variables - VAR_GLOBAL

Normal variables, constants, external or remanent variables that are known throughout the project

can be declared as global variables.

NOTES:
A variable defined locally in a POU with the same name as a global variable will have priority
within the POU. Global variables always will be initialized before local variables of POUs.

The variables have to be declared locally between the keywords VAR_GLOBAL and END_VAR.

Regard the possibility of adding an attribute to VAR_GLOBAL.

A variable is recognized as a global variable by a preceding dot, for example .iGlobVar1.

For detailed information on multiple uses of variable names, the global scope operator “.” and name

spaces see: Global Scope Operator.

4. Programming Reference

 48

Use global variables lists (GVLs) to structure and handle global variables within a project. A GVL

can be added via the Add Object command.

Temporary Variables - VAR_TEMP

This feature is an extension to the IEC 61131-3 standard.

VAR_TEMP declarations are only possible within programs and function blocks. Those variables are

also only accessible within the body of the program or function block. VAR_TEMP declared
variables are (re)initialized every time the POU is called.

The variables have to be declared locally between the keywords VAR_TEMP and END_VAR.

Static Variables - VAR-STAT

This feature is an extension to the IEC 61131-3 standard.

Static variables can be used in function blocks, methods and functions. They have to be declared

locally between the keywords VAR_STAT and END_VAR and will be initialized at the first call of

the respective POU.

Static variables are only accessible within the scope in which they are declared (like a static variable

in C), but like a global variable does not lose its value after the POU is left. For example in a function

they might be used as a counter for the number of function calls.

Regard the possibility of adding an attribute to VAR_STAT.

External Variables – VAR_EXTERNAL

These are global variables which are imported into the POU.

They have to be declared locally between the keywords VAR_EXTERNAL and END_VAR and in
the global variable list. The declaration must exactly match the global declaration. If the global

variable does not exist, an error message will appear.

NOTE: In MasterTool IEC XE it is not necessary to define variables as external. This keyword is
provided in order to maintain compatibility to IEC 61131-3.

Example:

VAR_EXTERNAL

iVarExt1:INT; (* First external variable *)

END_VAR

Attribute Keywords for Variable Types

The following attribute keywords can be added to the declaration of the variables type in order to

specify the scope:

 RETAIN: See Remanent Variables of type RETAIN

 PERSISTENT: See Remanent Variables of type PERSISTENT

 CONSTANT: See Constants

Remanent Variables

Remanent variables can retain their value throughout the usual program run period.

The declaration determines the degree of resistance of a remanent variable in the case of resets,
downloads or a reboot of the PLC. In applications mainly the combination of both remanent flags

will be required.

See in the following:

 Retain Variables

4. Programming Reference

 49

 Persistent Variables

Retain Variables

Variables declared as retains will be kept PLC-dependently but typically in a separate memory area.

They get the keyword RETAIN in their declaration in a POU and in a global variable list.

Example:

VAR RETAIN

iRem1 : INT; (* 1. Retain variable *)

END_VAR

Retain variables are identified by the keyword RETAIN. These variables maintain their value even
after an uncontrolled shutdown of the controller as well as after a normal switch off and on of the

controller and at the online command Reset warm.

When the program is run again, the stored values will be processed further.

All other variables are newly initialized, either with their initialized values or with the standard

initializations.

Contrary to persistent variables, retain variables are reinitialized at a new download of the program.

Retain variables however are re-initialized at Reset origin and - in contrast to persistent variables - at
Reset cold and an application download.

The Retain property can be combined with the Persistent property.

NOTES:
- If a local variable in a program is declared as VAR RETAIN, then exactly that variable will be
saved in the retain area (like a global retain variable).
- If a local variable in a function block is declared as VAR RETAIN, then the complete instance of
the function block will be saved in the retain area (all data of the POU), whereby only the declared
retain variable will be handled as a retain.
- If a local variable in a function is declared as VAR RETAIN, then this will be without any effect.
The variable will not be saved in the retain area. If a local variable is declared as PERSISTENT in a
function, then this will be without any effect also.

Persistent Variables

Persistent variables are identified by keyword PERSISTENT (VAR_GLOBAL PERSISTENT). They
get only re-initialized at a Reset origin. In contrast to Retain variables they maintain their values after

a download. An application example for persistent variables would be a counter for operating hours,

which should continue counting even after a power fail or download. See below the synoptic table.

Persistent variables ONLY can be declared in a special global variables list of object type Persistent

Variables, which is assigned to an application. There might be only ONE such list per application.

NOTE: A declaration with VAR_GLOBAL PERSISTENT effects the same as a declaration with
VAR_GLOBAL PERSISTENT RETAIN or VAR_GLOBAL RETAIN PERSISTENT.

Like retain variables the persistent variables get stored in a separate memory area.

Example:

VAR GLOBAL PERSISTENT RETAIN

iVarPers1 : DINT; (* 1. Persistent+Retain Variable App1 *)

bVarPers : BOOL; (* 2. Persistent+Retain Variable App1 *)

END_VAR

NOTE: Currently only global persistent variables are possible, except that there is some mechanism
that allows the PLC using this type of operation.

4. Programming Reference

 50

The target system must provide a separate memory area for the persistent variables list of each

application.

At each re-load of the application the persistent variables list on the PLC will be checked against that
of the project. The list on the PLC inter alia is identified by the application name. In case of

inconsistencies the user will be prompted to re-initialize all persistent variables of the application.

Inconsistency might result from renaming or removing or other modifications of the existing
declarations in the list.

NOTE: So carefully consider any modifications in the declaration part of the persistent variables list
and the effect of the resultantly requested re-initialization.

New declarations only can be added at the end of the list. At a download those will be detected as

"new" and will not demand a re-initialization of the complete list.

Legend of the behavior: Value gets maintained (x) and Value gets initialized (-).

Situation Behavior

After online command VAR VAR RETAIN VAR PERSISTENT
VAR RETAIN PERSISTENT

VAR PERSISTENT RETAIN

Reset warm - x x

Reset cold - - x

Reset origin - - -

Download <application> - - x

Online Change

<application>

x x x

Reboot PLC - x x

Table 4-4. Behavior of Remanent Variables

Constants

Constants are identified by the key word CONSTANT. They can be declared locally or globally.

Syntax:

VAR CONSTANT

<Identifier>:<Type> := <Initialization>;

END_VAR

Example:

VAR CONSTANT

c_iCon1:INT:=12; (* 1. Constant*)

END_VAR

See the Operands description for a listing of possible constants. See there also regarding the

possibility of using typed constants.

Typed Literals

Basically, in using IEC constants, the smallest possible data type will be used. If another data type

must be used, this can be achieved with the help of typed literals without the necessity of explicitly
declaring the constants. For this, the constant will be provided with a prefix which determines the

type.

Syntax:

<Type>#<Literal>

<Type> specifies the desired data type; possible entries are all simple

data types. The type must be written in uppercase letters.

4. Programming Reference

 51

<Literal> specifies the constant. The data entered must fit within the

data type specified under <Type>.

Example:

iVar1:=DINT#34;

If the constant cannot be converted to the target type without data loss, an error message is issued:

Typed literals can be used wherever normal constants can be used.

Constants in Online Mode

The constants are indicated by a symbol preceding the value in the value column of the

Declaration or Watch window in online mode. In this case they cannot be accessed by e.g. forcing or
writing.

Variables Configuration – VAR_CONFIG

The variables configuration can be used to map function block variables on the process image, that is
on the device I/Os, without the need of specifying the definite address already in the declaration of

the function block variable. The assignment of the definite address in this case is done centrally for

all function block instances in a global VAR_CONFIG list.

For this purpose you can assign incomplete addresses to the function block variables declared
between the key words VAR and END_VAR. These addresses are to be identified with an asterisk.

Syntax:

<Identifier> AT %<I|Q>* : <Data type>;

Example of the use of not completely defined addresses:

FUNCTION_BLOCK locio

VAR

xLocIn AT %I*: BOOL := TRUE;

xLocOut AT %Q*: BOOL;

END_VAR

Here two local I/O-variables are defined, a local-In (%I*) and a local-Out (%Q*).

Then the final definition of the addresses is to be done in the variables configuration in a global

variables list.

For this purpose add a Global Variable List object (GVL) to the Devices window by the Add Object
command. There enter the declarations of the instance variables with the definite addresses between

the key words VAR_CONFIG and END_VAR.

The instance variables must be specified by the complete instance path through which the individual
POUs and instance names are separated from one another by periods. The declaration must contain

an address whose class (input/output) corresponds to that of the incompletely specified address (%I*,

%Q*) in the function block. Also the data type must agree with the declaration in the function block.

Syntax:

<Instance variable path> AT %<I|Q><Location> : <Data type>;

Configuration variables, whose instance path is invalid because the instance does not exist, are
denoted as errors. On the other hand, an error is also reported if no definite address configuration

exists for an instance variable assigned to an incomplete address.

Example for a variable configuration:

Assume that the following definition for function block "locio" - see the example above - is given in

a program.

PROGRAM MainPrg

VAR

4. Programming Reference

 52

locioVar1: locio;

locioVar2: locio;

END_VAR

Then a corrected variable configuration would look this way:

VAR_CONFIG

MainPrg.locioVar1.xLocIn AT %IX1.0 : BOOL;

MainPrg.locioVar1.xLocOut AT %QX0.0 : BOOL;

MainPrg.locioVar2.xLocIn AT %IX1.0 : BOOL;

MainPrg.locioVar2.xLocOut AT %QX0.3 : BOOL;

END_VAR

NOTE: Changes on directly mapped I/Os are immediately shown in the process image, whereas
changes on variables mapped via VAR_CONFIG are not shown before the end of the responsible
task.

Declaration and Initialization of User Defined Data Types

Besides the standard data types also user defined types might be used.

For information on declaration and initialization see the pages on Data Types and User Defined

Data Types.

FB_Init and FB_Reinit Methods

FB_Init

The method FB_init replaces the INI operator. It is a special method for a function block which can

be declared explicitly but also and in any case is available implicitly. Thus in any case it can be

accessed for each function block.

The init method contains initialization code for the function block as declared in the declaration part

of the function block. If the init method is declared explicitly, the implicit initialization code will be

inserted into this method. The programmer can add further initialization code.

NOTE: When execution reaches the user defined initialization code, the function block is already
fully initialized via the implicit initialization code.

The Init method is called after download all for each declared instance.

ATTENTION:

In online change the previous values will overwrite the initialization values.

On the call sequence in case of inheritance please see: FB_Exit.

Regard also the possibility of defining a function block instance method to be called automatically
after initialization via FB_init: attribute call_after_init.

Interface of the Init Method

METHOD fb_init : BOOL

VAR_INPUT

bInitRetains : BOOL; // If TRUE, the retain variables are initialized

(warm start / cold start)

bInCopyCode : BOOL; // If TRUE, the instance afterwards gets moved into

the copy code (online change)

END_VAR

The return value is not interpreted.

4. Programming Reference

 53

NOTE: Notice also the possible use of an "exit" method and the resulting execution order: See:
FB_Exit.

User Defined Input

In an init method additional inputs can be declared. Those must be assigned at the declaration of a

function block instance.

Example for an init method for a function block “serialdevice”:

METHOD fb_init : BOOL

VAR_INPUT

bInitRetains : BOOL; (*Initialization of retains *)

bInCopyCode : BOOL; (*Instance moved into copy code *)

nCOMnum : INT; (*Additional input: number of the COM interface to listen

at *)

END_VAR

Example for declaration of function block “serialdevice”:

COM1 : serialdevice(nCOMnum:=1);

COM0 : serialdevice(nCOMnum:=0);

FB_Reinit

If a method named “FB_reinit” is declared for a function block instance, this method will be called
when the instance gets copied (which for example is the case at an online change after a modification

of the function block declaration). The method will cause a reinitialization of the new instance

module that has been created by the copy code. A reinitialization might be desired because the data
of the original instance will be written to the new instance after the copying, but you might want to

get the original init values. The FB_reinit method has no inputs. Regard that in contrast to FB_init

the method must be declared explicitly. If a reinitialization of the basic function block
implementation is desired, FB_reinit must be explicitly called for that POU.

The FB_reinit method has no inputs.

On the call sequence in case of inheritance please see: FB_Exit.

FB_Exit

A special method for a function block is a method named FB_Exit. It must be declared explicitly,

there is no implicit declaration. The exit method - if present - is called for all declared instances of

the function block before a new download, at a reset or during online change for all moved or deleted
instances.

There is only one mandatory parameter:

METHOD fb_exit : BOOL

VAR_INPUT

bInCopyCode : BOOL; // If TRUE, the exit method is called for exiting an

instance that is copied afterwards (online change).

END_VAR

Regard also the FB_init method and the following execution order.

 Exit method: exit old instance: old_inst.fb_exit (bInCopyCode:= TRUE)

 Init method: init new instance: new_inst.fb_init (bInitRetains:= FALSE, bInCopyCode := TRUE)

 Copy function block values (copy code): copy_fub (&old_inst, &new_inst);

Besides this, in case of inheritance the following call sequence is true (whereby for the POUs used

for example in this listing the following is assumed: SubFB EXTENDS MainFB and SubSubFB

EXTENDS SubFB):

fbSubSubFb.FB_Exit(...);

fbSubFb.FB_Exit(...);

4. Programming Reference

 54

fbMainFb.FB_Exit(...);

fbMainFb.FB_Init(...);

fbSubFb.FB_Init(...);

fbSubSubFb.FB_Init(...);

For FB_reinit:

fbMainFb.FB_reinit(...);

fbSubFb.FB_reinit(...);

fbSubSubFb.FB_Init(...);

Pragma Instructions

A pragma instruction is used to affect the properties of one or several variables concerning the

compilation and precompilation process. This means that a pragma influences the code generation.
For example it might determine whether a variable will be initialized, monitored, added to a

parameter list, made invisible in the library manager or should be added to the symbol configuration.

Message outputs during the build process can be forced and also conditional pragmas can be used,

which define how the variable should be treated depending on certain conditions. Those pragmas also
can be entered as "defines" in the compile properties of a particular object.

A pragma can be used in a separate line, or in with supplementary text in an implementation or

declaration editor line. Within the FBD/LD/IL editor use the command Insert label and replace the
default text Label: in the arising text field by the pragma. In case you want to set a label as well as a

pragma, insert the pragma first and the label afterwards.

The pragma instruction is enclosed in curly brackets, upper- and lower-case are ignored:

{ <Instruction text> }

The opening bracket can immediately come after a variable name. Opening and closing bracket must
be in the same line.

Depending on the type and contents of a pragma the pragma either operates on the line in which it is

located or on all subsequent lines until it is ended by an appropriate pragma, or until the same pragma

is executed with different parameters, or until the end of the file is reached. A "file" in this context is
a declaration part, implementation part, global variable list or type declaration.

If the compiler cannot meaningfully interpret the instruction text, the entire pragma is handled as a

comment and read over. A warning will be issued in this case.

See the following pragma types:

 Message pragmas

 Attribute pragmas

 Additional pragmas

Message Pragma

Message pragmas can be used to force the output of messages in the Messages window during the
compilation (build) of the project.

The pragma instruction can be inserted in an existing line or in a separate line in the text editor of a

POU. Message pragmas positioned within currently not defined sections of the implementation code

will not be regarded when the project is compiled. On this see the example provided with the
description of the “defined (identifier)” Conditional Pragma.

There are four types of message pragmas:

4. Programming Reference

 55

Pragma Message type

{text 'string'} Text: The specified textstring will be displayed.

{info 'string'} Information: The specified textstring will be displayed.

{warning digit 'string'} Warning : The specified textstring will be displayed

Unlike a "data type-global" Obsolete Pragma this warning is explicitly

defined for the local position.

{error 'string'} Error : The specified textstring will be displayed.

Table 4-5. Message Pragma Types

NOTE: In case of messages of types Information, Warning and Error the source position of the
message - that is where the pragma is placed in a POU - can be reached via the Next Message
command. This is not possible for the Text type.

Example of declaration and implementation in ST editor:

VAR

ivar : INT; {info 'TODO: should get another name.'}

bvar : BOOL;

arrTest : ARRAY [0..10] OF INT;

i:INT;

END_VAR

arrTest[i] := arrTest[i]+1;

ivar:=ivar+1;

{text 'Part xy has been compiled completely.'}

{info 'This is a information.'}

{warning 'This is a warning.'}

{error 'This is a error.'}

Figure 4-1. Output in Messages Window

Attribute Pragmas

Attribute pragmas might be assigned to a signature in order to influence the compilation and pre-

compilation, i.e. the code generation.

There are user defined pragmas which might be used in combination with conditional pragmas and
there are also the following predefined standard attribute pragmas.

 Attribute 'displaymode'

 Attribute 'global_init_slot'

 Attribute 'hide'

 Attribute 'hide_all_locals'

 Attribute 'Init_Namespace'

 Attribute 'init_on_onlchange'

 Attribute 'instance-path'

4. Programming Reference

 56

 Attribute 'linkalways'

 Attribute 'Monitoring'

 Attribute 'no_check'

 Attribute 'noinit'

 Attribute 'obsolete'

 Attribute 'pack_mode'

 Attribute 'qualified_only'

 Attribute 'reflection'

 Attribute 'symbol'

User Defined Attributes

It is possible to assign arbitrary user- or application-defined attribute pragmas to POUs, type

declarations or variables. This attribute can be queried before compilation by means of conditional
pragmas.

Syntax:

{attribute 'attribute'}

This pragma instruction is valid for the current or - if placed in a separate line - for the subsequent

line. See for the use of Conditional Pragmas.

An user defined attribute can be assigned to the following objects:

 POUs and Actions

 Variables

 Types

Example for POUs and Actions:

Attribute 'displaymode' to the variable dwVar1:

VAR

{attribute 'displaymode':='hex'}

dwVar1: DWORD;

END_VAR

Example for variables:

Attribute 'DoCount', defined in Conditional Compilation Operators, for the variable ivar is added:

PROGRAM MAINPRG

VAR

{attribute 'DoCount'}

ivar:INT;

bvar:BOOL;

END_VAR

Displaymode Attribute

With the help of the pragma {attribute 'displaymode'} the display mode of a single variable can be
defined. This setting will overwrite the global setting for the display mode of all monitoring

variables, done via the commands of the submenu Display Mode (available in the Online menu).

The pragma must be positioned in the line above the line containing the variables declaration.

Syntax:

{attribute ‘display mode’:=’<display mode>’}

For display in binary format:

{attribute'display mode':='bin'}

{attribute'display mode':='binary'}

4. Programming Reference

 57

For display in decimal format:

{attribute'display mode':='dec'}

{attribute'display mode':='decimal'}

For display in hexadecimal format:

{attribute'display mode':='hex'}

{attribute'display mode':='hexadecimal'}

Example:

VAR

{attribute 'display mode':='hex'}

dwVar1: DWORD;

END_VAR

Global_init_slot Attribute

The pragma {attribute 'global_init_slot'} can only be applied for signatures. Per default the order of
initializing the variables of a global variable list is arbitrary. However, in some cases prescribing an

order is necessary, e.g. if variables of one global list are referring to variables of another list. In this

case you may make use of the pragma to arrange the order for global initialization.

Syntax:

{attribute 'global_init_slot’ := '<Value>'}

The template <Value> has to be replaced by an integer value describing the initialization order of the

signature. The default value is 50000. A lower value provokes an earlier initialization. In case of

signatures carrying the same value for the attribute 'global_init_slot' the sequence of their

initialization rests undefined.

Example:

Assume the project including two global variable lists GVL_1 and GVL_2.

Figure 4-2. Global Variable Lists

The variables B and C are members of global variable list GVL_1, their initial values depend on the
variable A.

VAR_GLOBAL

B : INT:=A+1;

C : INT:=A-1;

END_VAR

The global variable A is member of the global variable list GVL_2.

{attribute 'global_init_slot' := '300'}

VAR_GLOBAL

A : INT:=1000;

END_VAR

Setting the attribute 'global_init_slot' of GVL_2 to 300 (lowest value in order of initializing), ensures

that the expression "A + 1" is defined during initialization of B and C, so you can use these variables

normally in any POU of the project. If the pragma is removed from GVL_2 and variables of GVL_1
are used in any POU it will show an error during project building.

4. Programming Reference

 58

Hide Attribute

With the help of the pragma {attribute 'hide'} you may prevent variables or even whole signatures

from being displayed within the List Components functionality, the Input Assistant or the declaration
part in online-modus. Only the variable subsequent to the pragma will be hidden.

Syntax:

{attribute 'hide’}

To hide all local variables of a signature use this attribute.

Example:

The function block myPOU is implemented making use of the attribute:

FUNCTION_BLOCK myPOU

VAR_INPUT

a:INT;

{attribute 'hide'}

a_invisible: BOOL;

a_visible: BOOL;

END_VAR

VAR_OUTPUT

b:INT;

END_VAR

VAR

END_VAR

In the main program two instances of function block myPOU are defined:

PROGRAM mainprg

VAR

POU1, POU2: myPOU;

END_VAR

When assigning e.g. an input value to POU1, the List Components function working on typing POU1

in the implementation part of MainPrg will display the variables a, a_visible and a, but not the hidden
variable a_invisible.

Hide_all_locals Attribute

With the help of the pragma {attribute 'hide_all_locals'} you may prevent all local variables of a

signature from being displayed within the List Components functionality or Input Assistant. This
attribute is identical to assigning the attribute hide to each of the local variables.

Syntax:

{attribute 'hide_all_locals’}

Example:

The function block myPOU is implemented making use of the attribute.

{attribute 'hide_all_locals'}

FUNCTION_BLOCK myPOU

VAR_INPUT

a:INT;

END_VAR

VAR_OUTPUT

b:BOOL;

END_VAR

VAR

c,d:INT;

END_VAR

In the main program two instances of function block myPOU are defined:

4. Programming Reference

 59

PROGRAM MainPrg

VAR

POU1, POU2: myPOU;

END_VAR

When assigning e.g. an input value to POU1, the List Components function working on typing POU1

in the implementation part of MainPrg will display the variables A and B, but none of the hidden
local variables C or D.

Init_Namespace Attribute

A variable of type STRING or WSTRING, which is provided with the pragma {attribute

'init_namespace'}, will be initialized with the current namespace, this is the path of the instance of the
function block this variable is contained. Applying this pragma presumes the use of the additional

attribute 'noinit' for the string variable and the attribute 'reflection' for the corresponding function

block.

Syntax:

{attribute 'init_namespace’}

Example:

The function block POU is provided with all necessary attributes.

{attribute 'reflection'}

FUNCTION_BLOCK POU

VAR_OUTPUT

{attribute 'no_init'}

{attribute 'instance-path'}

myStr: STRING;

END_VAR

Within the main program MainPrg an instance fb of the function block POU is defined.

PROGRAM MAINPRG

VAR

fb:POU;

newString: STRING;

END_VAR

newString:=fb.myStr;

The variable myStr will be initialized with the current namespace, e.g.

Device.Application.MainPrg.fb. This value will be assigned to newString within the main program.

Init_on_onlchange Attribute

The pragma {attribute 'init_on_onlchange'} attached to a variable will cause this variable to get

initialized with each online change.

Syntax:

{attribute 'init_on_onlchange'}

Instance-path Attribute

The pragma {attribute 'instance-path'} may be added to a local string variable that, in consequence,

will be initialized with the device tree path of the POU this string variable belongs to. This may be a

useful feature for error messages. Applying this pragma presumes the use of the attribute 'reflection'
for the corresponding POU and the additional attribute 'noinit' for the string variable.

Syntax:

{attribute 'instance-path’}

Example:

4. Programming Reference

 60

Assume the following function block being equipped with the attribute 'reflection':

{attribute 'reflection'}

FUNCTION_BLOCK POU

VAR

{attribute 'instance-path'}

{attribute 'noinit'}

str: STRING;

END_VAR

An instance of the function block is called in the program MainPrg:

PROGRAM MAINPRG

VAR

myPOU: POU;

myString: STRING;

END_VAR

myPOU();

myString:=myPOU.str;

The instance myPOU having been initialized the string variable STR will be assigned the path of the

instance myPOU of POU, e.g. Device.Application.MAINPRG.myPOU. This path will be assigned to

variable myString within the main program.

NOTE: The length of a string variable may be arbitrarily defined (even 255), however be aware that
the string will be cut (from its back end) if it gets assigned to a variable of a too short data type.

Linkalways Attribute

The pragma {attribute 'linkalways'} allows to mark POUs for the compiler in a way so that they are
always included into the compile information. As a result, objects with this option will be always

compiled and downloaded to the PLC. This option only affects POUs and GVLs that are located

below an application or in libraries which are inserted below an application. The compiler option
Link always does the same.

Syntax:

{attribute 'linkalways’}

When using the symbol configuration editor the marked POUs are used as basis for the selectable

variables for the symbol configuration.

Example:

The global variable list GVLMoreSymbols is implemented making use of the attribute.

{attribute 'linkalways'}

VAR_GLOBAL

g_iVar1: INT;

g_iVar2: INT;

END_VAR

Monitoring Attribute

A property may be monitored in online mode either with help of Monitoring window.

The monitoring can be activated by adding the monitoring attribute pragma in the line above the

property definition. Then in online view of the POU using the property and in a watch list the name,

type and value of the variables of the property will be displayed. Therein you may also enter prepared
values to force variables belonging to the property.

4. Programming Reference

 61

Figure 4-3. Example of Property Prepared for Variable Monitoring

Figure 4-4. Example of Monitoring View

There are two different ways to get monitored the current value of the property variables. For the
particular use case consider carefully which attribute is suitable to actually get the desired value. This

will depend on whether operations on the variables are implemented within the property.

Pragma {attribute 'monitoring':=variable}

Pragma {attribute 'monitoring':='call'}

In the first case ({attribute 'monitoring':='variable'}'), an implicit variable is created for the property,

which will get the current property value always when the application calls the Set or Get method.
The value of this implicit variable will be monitored.

In the second case ({attribute 'monitoring':='call'}', the attribute can only be used for properties

returning simple data types or pointers, not for structured types.

The value to be monitored is retrieved directly by calling the property, i.e. the monitoring service of
the runtime system calls the Get method. Regard that if any operations on the variables are

implemented within the property, the value might still change.

No_check Attribute

The pragma {attribute 'no_check'} is added to a POU in purpose to suppress the call of any POUs for

Implicit Checks. As check functions may influence the performance, it is reasonable to apply this

attribute to POUs that are frequently called or already approved.

Syntax:

{attribute 'no_check’}

Example:

4. Programming Reference

 62

Using the POU for implicit checks CheckRangeSigned, for example, added to the project, run the

code below with the pragma {attribute 'no_check'}, the function won’t be checked in this case,

allowing the variable "x" to accept any value.

{attribute 'no_check'}

PROGRAM MainPrg

VAR

 x: DINT (100..200);

 y: DINT;

END_VAR

x := y;

No_init Attribute

Variables provided with the pragma {attribute 'no_init'} won't be initialized implicitly. The pragma

belongs to the variable declared subsequently.

Syntax:

{attribute 'no_init'}

or

{attribute'no-init'}

{attribute 'noinit'}

Example:

PROGRAM MainPrg

VAR

A : INT;

{attribute 'no_init'}

B : INT;

END_VAR

If a reset is performed on the associated application the integer variable A will be again initialized
implicitly with 0, whereas variable B maintains the value it is currently assigned to.

Obsolete Attribute

An pragma {attribute 'obsolete'} can be added to a data type definition in order to cause a user-

defined warning during a build run, if the respective data type (structure, function block etc.) is used
within the project. Thus for example you might announce that the data type should not be used any

longer.

Unlike a locally used Message Pragma this warning is defined within the definition and thus globally
for all instances of the data type.

This pragma instruction always is valid for the current line or - if placed in a separate line - for the

subsequent line.

Syntax:

{attribute 'obsolete' := 'User defined text'}

Example:

The obsolete pragma is inserted in the definition of function block fb1.

{attribute 'obsolete' := 'Data type fb1 not valid'}

FUNCTION_BLOCK fb1

VAR_INPUT

i:INT;

END_VAR

...

4. Programming Reference

 63

If fb1 is used as a data type in a declaration, e.g. fbinst: fb1, the following warning will be dumped

when the project is built: Data type fb1 not valid.

Pack_mode Attribute

The pragma {attribute 'pack_mode'} defines the mode a data structure is packed while being

allocated. The attribute has to be set on top of a data structure and will influence the packing of the

whole structure.

Syntax:

{attribute 'pack_mode’ := '<Value>'}

The template <Value> included in single quotes has to be replaced by one of the following values

available:

Value Description

0 Aligned, i.e. there will be no memory gaps.

1 1-byte- aligned (identical to aligned).

2 2-byte- aligned, i.e. the maximum size of a memory gap is 1 byte.

4 4-byte- aligned, i.e. the maximum size of a memory gap is 3 bytes.

8 8-byte-aligned, i.e. the maximum size of a memory gap is 7 bytes.

Table 4-6. Pack_mode Attribute

Example:

{attribute'pack_mode':= '1'}

TYPE myStruct:

STRUCT

Enable: BOOL;

Counter: INT;

MaxSize: BOOL;

MaxSizeReached: BOOL;

END_STRUCT

END_TYPE

A variable of data type myStruct will be instantiated aligned: If the address of its component Enable

is 0x0100 for example, then the component Counter will follow on address 0x0101, MaxSize on
0x0103 and MaxSizeReached on 0x0104. With 'pack_mode'=2 Counter would be found on 0x0102,

MaxSize on 0x0104 and MaxSizeReached on 0x0105.

NOTE: The attribute may also be applied to POUs. Though, you have to be careful with its
application due to eventually existing internal pointers of the POU.

Qualified_only Attribute

After assigning the pragma {attribute 'qualified_only'} on top of a global variable list, its variables
can only be accessed by using the global variable name, e.g. gvl.g_var. This works even for variables

of enumeration type and may be useful to avoid name mismatch with local variables.

Syntax:

{attribute 'qualified_only’}

Example:

Assume the following global variable list GVL with attribute 'qualified_only':

{attribute 'qualified_only'}

VAR_GLOBAL

iVar:INT;

END_VAR

4. Programming Reference

 64

Within a POU MainPrg, for example, this global variable has to be called with the prefix GVL:

GVL.iVar:=5;

The following incomplete call of the variable will cause instead an error:

iVar:=5;

Reflection Attribute

The pragma {attribute 'reflection'} is attached to signatures. Due to performance reasons it is an
obligatory attribute for POUs carrying the instance-path attribute.

Syntax:

{attribute 'reflection'}

Example:

See the example of the instance-path attribute.

Symbol Attribute

The pragma {attribute 'symbol'} defines which variables are to be handled in the Symbol

configuration, which means that they will be exported as symbols into a symbol list, exported to a

XML-file (<Project Name>.Device.Application.xml) in the project directory as well as to a file not
visible for the user and available on the target system for external access, e.g. by an OPC-Server.

Variables provided with that attribute will be downloaded to the PLC even if they have not been

configured or are not visible within the symbol configuration editor.

Regard that the Symbol configuration must be available as an object below the respective application

in the Devices tree.

Syntax:

{attribute 'symbol' := 'none' | 'read' | 'write' | 'readwrite'}

Regard that access is only allowed on symbols coming from programs or global variable lists. For
accessing a symbol the symbol name must be specified completely.

The pragma definition can be assigned to particular variables or collectively to all variables declared

in a program:

 To be valid for a single variable the pragma has to be placed in the line before the variables

declaration

 To be valid for all variables contained in the declaration part of a program the pragma has to be

placed in the first line of the declaration editor. Anyway also in this case the settings for

particular variables might be modified by an explicit adding of a pragma

The possible access on a symbol is defined by the pragma parameter 'none', 'read', 'write' or
'readwrite'. If no parameter is defined, the default 'readwrite' will be valid.

Example:

With the following configuration the variables A and B will be exported with read and write access.
Variable D will be exported with read access.

{attribute 'symbol' := 'readwrite'}

PROGRAM MAINPRG

VAR

A : INT;

B : INT;

{attribute 'symbol' := 'none'}

C : INT;

{attribute 'symbol' := 'read'}

D : INT;

END_VAR

4. Programming Reference

 65

Conditional Pragmas

The ExST (Extended ST) language supports several conditional pragma instructions which affect the

code generation in the pre-compile and compile process.

The implementation code which will be regarded for compilation for example might depends on:

 whether a certain data type or variable is declared

 whether a type or variable has got a certain attribute

 whether a variable has a certain data type

 whether a certain POU or task is available and is part of the call tree

NOTE: It is not possible for a POU or GVL declared in the POUs tree to use a {define...} declared
in an application.

Pragma Description

{define identifier

string}

During preprocessing all subsequent instances of the identifier will be

replaced with the given sequence of tokens, if the token string is not
empty (which is allowed and well-defined). The identifier remains

defined and in scope until the end of the object or until it is undefined in
an {undefine} directive. See Conditional compilation below.

{undefine identifier} The identifier's preprocessor definition (by {define},

see above) will be removed, the identifier hence is "undefined". If the

specified identifier is not currently defined, this pragma will be ignored.

{IF expr}

...

{ELSIF expr}

...

{ELSE}

...

{END_IF}

These are pragmas for conditional compilation. The specified

expressions exprs are required to be constant at compile time; they

are evaluated in the order in which they appear until one of the
expressions evaluates to a nonzero value. The text associated with the
successful directive is preprocessed and compiled normally; the others

are ignored. The order of the sections is determinate; however, the

elsif and else sections are optional, and elsif sections may appear

arbitrarily often.Within the constant expr several "conditional compilation
operators" can be used, which are described below.

Table 4-7. Conditional Pragmas

Conditional Compilation Operators

Within the constant expression “expr” of a conditional compilation pragma ({if} or {elsif}), several

operators can be used. These operators itself may not be undefined or redefined via {undefine} or
{define}, respectively. Regard that these expressions as well as the definition done by {define} can

also be used in the Compiler defines in the Properties dialog of an object.

The following operators are supported:

SYNTAX Description

Defined (Identifier) When applied to an identifier, its value is TRUE if that identifier has

been defined with a {define} instruction and not later undefined using
{undefine}; otherwise its value is FALSE.

Example: Precondition: there are two POUs. The variable "pdef1" is
defined by a {define} on POU_1, but not in POU_2. Both have the

code below:

{IF DEFINED (PDEF1)}

(* This code is processed in POU_1 *)

{INFO 'PDEF1 DEFINED'}

IVAR := IVAR + SINT#1;

{ELSE}

(*This code is processed in POU_2*)

{INFO 'PDEF1 NOT DEFINED'}

IVAR := IVAR - SINT#1;

{END_IF}

Here additionally an example of a message pragma is included: Only

information string "pdef1 defined" will be displayed in the message

4. Programming Reference

 66

SYNTAX Description

window when the POU_1 was called, because pdef1 actually is

defined. Info message "pdef1 not defined" will be displayed in case
pdef1 is not defined, POU_2.

Defined (variable: name of
variable)

When applied to a variable, its value is TRUE if this particular variable
is declared within the current scope. Otherwise is FALSE. Both have

the code below:

Example:

Precondition: There are two POUs, POU_1 and POU_2. Variable
g_bTest is declared in POU_2, but not in POU_1.

{IF defined (variable:g_bTest)}

(*The following code is only processed in POU_2 *)

g_bTest := x > 300;

{END_IF}

Defined (type: identifier) When applied to a type identifier, its value is TRUE if a type with that

particular name is declared. Otherwise is FALSE.

 Example: Precondition: At first declare the data type of DUT in the
project, does not state a second time, see the difference in the
boolean variable "bDutDefined."

{IF defined (type:DUT)}

(*The following code line only will be processed if have the data type
declared*)

bDutDefined := TRUE;

{END_IF}

Defined (pou: POU name) When applied to a pou-name, its value is TRUE if a POU or an action

with that particular name is defined. Otherwise is FALSE.

Example:

Precondition: In a scenario the POU CheckBounds was added to the
project and not in another. In a POU there is the code below:

{IF defined (pou:CheckBounds)}

(*The following line of code will only be processed in the scenario
where there is a POU CheckBounds *)

arrTest[CheckBounds(0,i,10)] := arrTest[CheckBounds(0,i,10)] + 1;

{ELSE}

(*The following line of code will only be processed in the scenario
where there is not a POU CheckBounds *)

arrTest[i] := arrTest[i]+1;

{END_IF}

Hasattribute (pou: POU

name, 'attribute')

TRUE if this particular attribute is specified in the first line of the

POUs declaration part.

Example:

Precondition: There are two function blocks fun1 and fun2, but in fun1

additionally has got an attribute 'vision'.

Definition of fun1:

{attribute 'vision'}

FUNCTION fun1 : INT

VAR_INPUT

i : INT;

END_VAR

VAR

END_VAR

Definition of fun2:

FUNCTION fun2 : INT

VAR_INPUT

i : INT;

END_VAR

VAR

END_VAR

In a POU exists the following code:

{IF hasattribute (pou: fun1, 'vision')}

(* The following code line will be processed *)

ergvar := fun1(ivar);

{END_IF}

{IF hasattribute (pou: fun2, 'vision')}

4. Programming Reference

 67

SYNTAX Description

(* The following code line not will be processed *)

ergvar := fun2(ivar);

{END_IF}

Hasattribute (variable:

name of variable,
'attribute')

When applied to a variable, its value is TRUE if this particular

attribute is specified via the {attribute} instruction in a line before the
variable's declaration.

Example:

Precondition: There are two POUs, POU_1 and POU_2. Variable
“g_globalInt” is used in POU_1 and POU_2, but in POU_1
additionally

 has got an attribute 'DoCount' :

Declaration of g_globalInt in POU_1:

VAR_GLOBAL

{attribute 'DoCount'}

g_globalInt : INT;

g_multiType : STRING;

END_VAR

Declaration of g_globalInt in POU_2 :

VAR_GLOBAL

g_globalInt : INT;

g_multiType : STRING;

END_VAR

{IF hasattribute (variable: g_globalInt, 'DoCount')}

(*The following code line will only be processed in POU_1, because

there variable g_globalInt has got the attribute 'DoCount' *)

g_globalInt := g_globalInt + 1;

{END_IF}

Hastype (variable:

variable, type)

When applied to a variable, its value is TRUE if this particular variable

has the specified type-spec. Otherwise is FALSE

ANY

ANY_DERIVED

ANY_ELEMENTARY

ANY_MAGNITUDE

ANY_BIT

ANY_STRING

ANY_DATE

ANY_NUM

ANY_REAL

ANY_INT

LREAL

REAL

LINT

DINT

INT

SINT

ULINT

UDINT

UINT

USINT

TIME

LWORD

DWORD

WORD

BYTE

BOOL

STRING

WSTRING

DATE_AND_TIME

DATE

TIME_OF_DAY

Example:

Precondition: In a POU with the code below, at first time the variable

4. Programming Reference

 68

SYNTAX Description

g_multitype is declared as LREAL and at second time is declared as

STRING.

{IF (hastype (variable: g_multitype, LREAL))}

(*The following line of code will only be processed when the variable
is declared as LREAL *)

g_multitype := (0.9 + g_multitype) * 1.1;

{ELSIF (hastype (variable: g_multitype, STRING))}

(*The following line of code will only be processed when the variable

is declared as STRING *)

g_multitype := ‘this is a multi-talented’;

{END_IF}

Hasvalue (define-ident,
string)

If the define (define-ident) is defined and it has the specified value
(char-string), then its value is TRUE, otherwise is FALSE

Example:

Precondition: Variable "test" is used in a POU, it gets value "1" at first

and value "2" a second time.

{IF has value(test,'1')}

(*The following code line will be processed when variable test has
value "1" *)

x := x + 1;

{ELSIF has value(test,'2')}

(*The following code line will be processed when variable test has

value "2" *)

x := x + 2;

{END_IF}

NOT operator Inverts the value of the operator.

Example:

Precondition:

In a scenario the CheckBounds function was added to the project and
not in another, there is the POU MainPrg in both cases. In a POU

there is the following code:

{IF defined (pou: MainPrg) AND NOT (defined (pou: CheckBounds))}

(* The following line of code will only be processed in the scenario
where there is not a CheckBounds function *)

bAndNotTest := TRUE;

{END_IF}

AND operator Is TRUE if both operators are TRUE.

Example:

Precondition:

In a scenario the CheckBounds function was added to the project and

not in another, the POU MainPrg there is in both cases. In a POU
there is the following code:

{IF defined (pou: MAINPRG) AND (defined (pou: CheckBounds))}

(* The following line of code will only be processed in the first

scenario, because only there MainPrg and CheckBounds are defined
*)

bAndTest := TRUE;

{END_IF}

OR operator Is TRUE if one of the operators are TRUE.

Example:

Precondition:

In a scenario the CheckBounds function was added to the project and

not in another, the POU MainPrg there is in both cases. In a POU
there is the following code:

{IF defined (pou: MAINPRG) OR (defined (pou: CheckBounds))}

(* The following line of code is processed in two scenarios, because

both contain at least one of the POUs *)

bOrTest := TRUE;

{END_IF}

(Operator) Braces "()" the operator.

Table 4-8. Syntax of “Defined”

4. Programming Reference

 69

List Components Functionality

The text input is supported noticing standard IEC 61131-3. The feature List Components (Tools,

Options, SmartCoding menu) helps to insert a correct identifier:

 If you - at any place, where a global identifier can be inserted - insert a dot (“.”) instead of the

identifier, a selection box will appear, listing all currently available global variables. You can

choose one of these elements and press <ENTER> to insert it behind the dot. You can also insert

the element by a double click on the list entry

 If you enter a function block instance or a structure variable followed by a dot, then a selection

box listing all input and output variables of the corresponding function block resp. listing the

structure components will appear, where you can choose the desired element and enter it by

pressing <ENTER> or by a double click. Examples:

Figure 4-5. List Components (Structure)

Figure 4-6. List Components (Function Block)

 If you enter any string and press <CTRL>+<SPACE> a selection box will appear listing all POUs

and global variables available in the project. The first list entry, which is starting with the given
string, will be selected and can be entered to the program by pressing the <ENTER> key

I/O Mapping

This sub-dialog of the devices is called Bus I/O Mapping, it used to setup a I/O mapping of the PLC.

This means that the project variables, used by applications, are assigned to inputs and outputs of the
device.

General

All I/O mapping can be set for the current device.

An address can also be assigned to a variable using AT declaration. In this case consider the
following points:

 AT declarations can be used with only the local or global variables, however, not with inputs and

outputs variable of the POUs.

 For AT declarations is not possible to create forces for variables.

4. Programming Reference

 70

 If AT declarations are used to structure or function block, all instances will access the same

memory location, corresponding to static variables in programming languages, such as C.

For further information, see AT Declaration.

The Bus I/O Mapping dialog contains on its bottom part the following commands:

 Reset mapping: This button resets the settings for the mapping default defined by the device

description file.

 Always update variables: If this option is enabled, all variables are updated in each cycle of the

task, no matter if they are used, or if they are mapped to an input or output.

Channels

Figure 4-7. Channels Dialog

 Variable: a variable can be mapped to the channel through the Input Assistant, or created a new

one by editing the field

 Mapping: Indicates whether the variable is new (), will be declared internally as a global

variable, or will be a mapping to an existing () in this case the address will appear scratched
and should not be used directly

 Channel: Channel name input or output of the device

 Address: Address of the channel, for example: "% IW0"

 Type: Data type of the input or output channel, for example: "BOOL"

 Unit: The unit of the parameter value, for example "MS" for milliseconds

 Description: Text description for the parameter

 Current value: Current value of the parameter, displayed in the online mode

You can modify and correct an input or output Address field. To do this select the column address

and press <SPACE> to open the edit field. Now, modify or unchanged the value and close the edit

field by pressing <ENTER>. The address field will be marked by the symbol .

Figure 4-8. Example of Modified Address Manually

4. Programming Reference

 71

You can only change the whole input or output address, not its sub elements. Thus, if an input or

output is represented in the mapping table with any subtree, only the highest address field can be

edited.

If you want to remove the fixing of the value, reopen the Address field edition, delete the value and

close by <ENTER>. The address and the following addresses will be set back to the values they had

before the manual modification and the symbol will be removed.

NOTE: For projects created from the MasterTool Standard Project, the devices channels will be
modified by MasterTool IEC XE in order to maintain a better distribution and organization of
channels. Therefore, they will appear with the symbol .

Data Types

You can use standard data types, user-defined data types or instances of function blocks when

programming. Each identifier is assigned to a data type which dictates how much memory space will
be reserved and what type of values it stores.

Standard Data Types

All data types described by standard IEC 61131-3 are supported by MasterTool IEC XE. See here the

following:

 BOOL / BIT

 Integer Data Types

 REAL / LREAL

 STRING / WSTRING

 Time Data Types

Notice that there are also some norm-extending data types and that you can also define types on your

own (user defined data types).

BOOL

BOOL type variables may be given the values TRUE (1) and FALSE (0). 8 bits of memory space

will be reserved.

See also: BOOL Constants.

BIT

As the BOOL type variables, the BIT type variables may have values TRUE and FALSE. Unlike the

BOOL type, the BIT type occupies only one bit of memory space. However, for this allocation can

happen correctly this data type can only be declared in Function Blocks or Structures (defined on
DUT type objects).

Integer Data Types

See below a list of all available integer data types. Each of the different number types covers a
different range of values. The following range limitations apply to the integer data types:

Type Lower limit Upper limit Memory space

BYTE 0 255 8 Bits

WORD 0 65535 16 Bits

DWORD 0 4294967295 32 Bits

LWORD 0 2
64

-1 64 Bits

SINT -128 127 8 Bits

USINT 0 255 8 Bits

INT -32768 32767 16 Bits

UINT 0 65535 16 Bits

4. Programming Reference

 72

DINT -2147483648 2147483647 32 Bits

UDINT 0 4294967295 32 Bits

LINT -2
63

 2
63

-1 64 Bits

ULINT 0 2
64

-1 64 Bits

Table 4-9. Integer Data Types

As a result when larger types are converted to smaller types, information may be lost.

See also: Number Constants.

REAL/LREAL

REAL and LREAL are so-called floating-point types. They are required to represent rational

numbers. 32 bits of memory space is reserved for REAL and 64 bits for LREAL.

Value range for REAL: 1.175494351e-38 to 3.402823466e+38.

Value range for LREAL: 2.2250738585072014e-308 to 1.7976931348623158e+308.

NOTES:
- The support of data type LREAL depends on the target device. Please see in the corresponding
documentation whether the 64 bit type LREAL gets converted to REAL during compilation
(possibly with a loss of information) or persists.
- If a REAL or LREAL is converted to SINT, USINT, INT, UINT, DINT, UDINT, LINT or ULINT
and the value of the real number is out of the value range of that integer, the result will be undefined
and will depend on the target system. Even an exception is possible in this case! In order to get
target-independent code, handle any range exceedance by the application. If the real/lreal number is
within the integer value range, the conversion will work on all systems in the same way.

See also: REAL/LREAL Constants.

STRING

A STRING type variable can contain any string of characters. The size entry in the declaration

determines how much memory space should be reserved for the variable. It refers to the number of

characters in the string and can be placed in parentheses or square brackets. If no size specification is

given, the default size of 80 characters will be used.

The string length basically is not limited in MasterTool IEC XE, but string functions only can

process strings of 1 - 255 characters! If a variable is initialized with a string too long for the variables

datatype, the string will be correspondingly cut from right to left.

Example of a String Declaration with 35 characters:

str:STRING(35):='This is a string';

See also: WSTRING and STRING Constants.

Time Data Types

The data types TIME, TIME_OF_DAY (abb. TOD), DATE and DATE_AND_TIME (abb. DT) are
handled internally like DWORD.

Time is given in milliseconds in TIME and TOD, time in TOD begins at 12:00 A.M.

Time is given in seconds in DATE and DT beginning with January 1, 1970 at 12:00 A.M.

Notice in this context also:

 LTIME (available as a 32-Bit time)

 TIME Constants

 DATE Constants

4. Programming Reference

 73

 DATE_AND_TIME Constants

 TIME_OF_DAY Constants

Extensions to the IEC 1131-3 Standard

Norm- Extended Data Types

In addition to the data types according to IEC1131-3 there are also some norm-extending data types
available implicitly in MasterTool IEC XE:

 UNION

 LTIME

 WSTRING

 Pointers

 References

UNION

As an extension to the IEC 61131-3 standard it is possible to declare unions in user-defined types.

In a union all components have the same offset: they all occupy the same storage location. Thus,

assuming a union definition as shown in the following example, an assignment to name “.a” also

would manipulate name “.b”.

Example:

TYPE name: UNION

a : LREAL;

b : LINT;

END_UNION

END_TYPE

LTIME

As extension to the IEC 61131-3 LTIME is supported as time base for high resolution timers. LTIME

is of size 64 Bit and resolution nanoseconds.

Syntax:

LTIME#<Time declaration>

The time declaration can include the time units as used with the TIME constant and additionally,

microseconds (us) and nanoseconds (ns).

Example:

LTIME1 := LTIME#1000d15h23m12s34ms2us44ns

Compare to TIME Constants (size 32 Bit and resolution milliseconds).

WSTRING

This string data type is an extension to the IEC 61131-3 standard.

It differs from the standard STRING type (ASCII) by getting interpreted in Unicode format.

Example:

wstr:WSTRING:="This is a WString";

See also: STRING and STRING Constants (Operands).

Pointers

As an extension to the IEC 61131-3 standard it is possible to use pointers.

4. Programming Reference

 74

Pointers save the addresses of variables, programs, function blocks, methods and functions while an

application program is running. A pointer can point to any of those objects and to any data type, even

to user-defined data types. Notice the possibility of using an implicit pointer check function.

Syntax:

<Identifier>: POINTER TO <Data type | Function block | Program | Method |

Function>;

Dereferencing a pointer means to obtain the value currently stored at the address to which it is

pointing A pointer can be dereferenced by adding the content operator “^” after the pointer identifier;

see for example “pt^” in the example below.

The Address Operator ADR can be used to assign the address of a variable to a pointer.

Example:

VAR

pt:POINTER TO INT; (* Declaration of pointer pt *)

var_int1:INT := 5; (*Declaration of variables var_int1 and var_int2 *)

var_int2:INT;

END_VAR

pt := ADR(var_int1); (* Address of varint1 is assigned to pointer pt *)

var_int2:= pt^; (* Value 5 of var_int1 gets assigned to var_int2 via

dereferencing of pointer pt; *)

Function Pointers
Function pointers are supported, replacing the INDEXOF operator. These pointers can be passed to

external libraries, but there is no possibility to call a function pointer within an application in the

programming system. The runtime function for registration of callback functions (system library
function) expects the function pointer, and, depending on the callback for which the registration was

requested, then the respective function will be called implicitly by the runtime system (for example at

STOP). In order to enable such a system call (runtime system) the respective property (category

Build) must be set for the function object.

The ADR operator can be used on function names, program names, function block names and

method names. Since functions can move after online change, the result is not the address of the

function, but the address of a pointer to the function. This address is valid as long as the function
exists on the target.

See also: INDEXOF.

Index Access to Pointers
As extension to the IEC 61131-3 standard, index access “[]” to variables of type POINTER, STRING

and WSTRING is allowed.

 Pint[i] will return the base data type

 Index access on pointers is arithmetic: If the index access is used on a variable of type pointer,

the offset will be calculated by: pint[i] = (pint + i * SIZEOF(base type))^. The index access also

performs an implicit dereferencation on the pointer. The result type is the base type of the
pointer. Note that pint[7] != (pint + 7)^!

 If the index access is used on a variable of type STRING, the result is the character at offset

index-expr. The result is of type BYTE. str[i] will return the i-th character of the string as a SINT

(ASCII)

 If the index access is used on a variable of type WSTRING the result is the character at offset

index-expr. The result is of type WORD. wstr[i] will return the i-th character of the string as INT

(Unicode)

NOTE: There is also the possibility of using References, which in contrast to a pointer directly
affect a value.

4. Programming Reference

 75

CheckPointer Function
For checking pointer access during runtime you might use the implicitly available check function

CheckPointer being called before each access on the address of a pointer. Therefore add the object
POUs for implicit checks to the application using the Add Object dialog. Mark the checkbox related

to the type CheckPointer, choose an implementation language and confirm your settings with Open,

whereon the check function will be opened in the editor corresponding to the implementation
language selected. Independently of that choice the declaration part is preset and may not be

modified except for adding further local variables. However, in contrast to other check functions,

there is no default implementation of CheckPointer available, the implementation is left to the user.

Function CheckPointer should check whether the address the pointer refers to is within the valid
memory range. In addition it should be taken care of that the alignment of the referenced memory

area fits to the data type of the variable the pointer points to. If both conditions are fulfilled,

CheckPointer should return the unchanged input pointer. A proper handling of detected error cases is
left to the user.

Template:

Declaration part:

// Implicitly generated code : DO NOT EDIT

FUNCTION CheckPointer : POINTER TO BYTE

VAR_INPUT

ptToTest : POINTER TO BYTE;

iSize : DINT;

iGran : DINT;

bWrite: BOOL;

END_VAR

Implementation part:

// No standard way of implementation. Fill your own code here.

CheckPointer := ptToTest;

When called the function gets the following input parameters:

 ptToTest: Target address of the pointer

 iSize: Size of referenced variable; the data type of iSize must be integer-compatible and must

cover the maximum potential data size stored at the pointer address

 iGran: Granularity of the access, that is the largest not-structured datatype used in the referenced

variable; the data type of iGran must be integer-compatible

 bWrite: type of access (TRUE=write access, FALSE= read access); the data type of bWrite must

be BOOL

 Return value: Address which is used for dereferencing the pointer, thus at best the one that has

been passed on as the first input parameter (ptToTest)

References

This data type is an extension to the IEC 61131-3 standard.

A REFERENCE is an alias for an object. The alias can be written or read via identifiers. The

difference to a pointer is that the value pointed to is directly affected and that the assignment of

reference and value is fix. The address of the reference must be set via a separate assignment
operation. Whether a reference points to a valid value (that is unequal 0) can be checked with the

help of a special operator, see below.

A reference is declared according to the following syntax:

Syntax:

<Identifier> : REFERENCE TO <DATA TYPE>

Example declaration:

4. Programming Reference

 76

ref_int : REFERENCE TO INT;

a : INT;

b : INT;

The ref_int is now available for being used as an alias for variables of type INT.

Example of use:

ref_int REF= a; (*ref_int does now point to a *)

ref_int := 12; (* a does now have the value 12 *)

b := ref_int * 2; (* b does now have the value 24 *)

ref_int REF= b; (*ref_int does now point to *)

ref_int := a / 2; (* b 6 *)

ref_int REF= 0; (*Explicit initialization of the reference *)

NOTES:
- It is not possible to declare references like REFERENCE TO REFERENCE, ARRAY OF
REFERENCE or POINTER TO REFERENCE.
- The references will be initializes (with 0).

Check For Valid References
Operator “__ISVALIDREF” can be used to check whether a reference points to a valid value, that is

a value unequal 0.

Syntax:

<Boolean variable> := __ISVALIDREF(<Identifier declared with type

REFERENCE TO < Data Type>);

<Boolean variable> will be TRUE, if the reference points to a valid value, FALSE if not.

Example:

Declaration:

ivar : INT;

ref_int : REFERENCE TO INT;

ref_int0: REFERENCE TO INT;

testref: BOOL := FALSE;

Implementation:

ivar := ivar +1;

ref_int REF= hugo;

ref_int0 REF= 0;

testref := __ISVALIDREF(ref_int); (* Will be TRUE, because ref_int points

to ivar, which is unequal 0 *)

testref0 := __ISVALIDREF(ref_int0); (*Will be FALSE, because ref_int is

set to 0 *)

User Defined Data Types

Additionally to the standard data types the user can define special data types within a project.

These definitions are possible via creating DUT (Data unit type) objects in the POUs window and

within the declaration part of a POU.

Please notice the given recommendations on the naming of objects in order to make it as unique as
possible.

See the following user defined data types:

 ARRAYS

 Structures

 Enumerations

 Subrange Types

4. Programming Reference

 77

 References

 Pointers

ARRAYS

One-, two-, and three-dimensional fields (ARRAYS) are supported as elementary data types. Arrays

can be defined both in the declaration part of a POU and in the global variable lists. Notice the
possibility of using implicit boundary checks.

Syntax:

<Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>] OF <Type>

Ll1, ll2, ll3 identify the lower limit of the field range; ul1, ul2 and ul3 identify the upper limit. The

range values must be integers.

Example:

Card_game: ARRAY [1..13, 1..4] OF INT;

ARRAYS Initialization

ATTENTION:

Squared brackets must be put around the initialization part.

Example for complete initialization of an array:

arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5];

arr2 : ARRAY [1..2,3..4] OF INT := [1,3(7)]; (* Short for 1,7,7,7 *)

arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4),2,3];

 (*Short for 0,0,4,4,4,4,2,3 *)

Example of the initialization of an array of a structure:

Structure definition:

TYPE STRUCT1

STRUCT

p1:int;

p2:int;

p3:dword;

END_STRUCT

END_TYPE

ARRAY initialization:

ARRAY[1..3] OF STRUCT1:= [(p1:=1,p2:=10,p3:=4723),(p1:=2,p2:=0,p3:=299),

(p1:=14,p2:=5,p3:=112)];

Example of the partial initialization of an ARRAY:

arr1 : ARRAY [1..10] OF INT := [1,2];

Elements to which no value is pre-assigned, are initialized with the default initial value of the basic

type. In the example above, the elements anarray[6] to anarray[10] are therefore initialized with 0.

Accessing ARRAY Components

ARRAY components are accessed in a two-dimensional ARRAY using the following syntax:

<Name>[Index 1, Index 2]

Example:

Card_game [9,2]

4. Programming Reference

 78

Check Functions

In order to a proper access to ARRAY elements during runtime the function CheckBounds must be

available to the application. Therefore add the object POUs for implicit checks to the application
using the Add Object dialog. Mark the checkbox related to the type CheckBounds, choose an

implementation language and confirm your settings with Open, whereon the function CheckBound

will be opened in the editor corresponding to the implementation language selected. Independently of
that choice the declaration part is preset and may not be modified except for adding further local

variables. A proposal default implementation of the function that might be modified is given in the

ST Editor.

This check function has to treat boundary violations by an appropriate method (for example by
setting a detected error flag or changing the index). The function will be called implicitly as soon as a

variable of type array is assigned.

ATTENTION:

In order to maintain the check functionality, do not change the declaration part of an implicit check
function.

Example for the use of function CheckBounds:

The default implementation of the check function is the following.

Declaration part:

// Implicitly generated code : DO NOT EDIT

FUNCTION CheckBounds : DINT

VAR_INPUT

index, lower, upper: DINT;

END_VAR

Implementation part:

// Implicitly generated code: Only an Implementation suggestion.

IF index < lower THEN

CheckBounds := lower;

ELSIF index > upper THEN

CheckBounds := upper;

ELSE

CheckBounds := index;

END_IF

When called the function gets the following input parameters:

 Index: Field element index

 Lower: The lower limit of the field range

 Upper: The upper limit of the field range

As long as the index is within the range, the return value is the index itself.

Otherwise -in correspondence to the range violation- either the upper or the lower limit of the filed

range will be returned.

In the program beyond the upper limit of the ARRAY A is exceeded:

PROGRAM MAINPRG

VAR

a: ARRAY[0..7] OF BOOL;

b: INT:=10;

END_VAR

a[b]:=TRUE;

In this case the implicit call to the CheckBounds function preceding the assignment effects that the

value of the index is changed from 10 (ten) into the upper limit 7 (seven). Therefore the value TRUE

4. Programming Reference

 79

will be assigned to the element a[7] of the ARRAY. This is how attempted access outside the field

range can be corrected via the function CheckBounds.

Structures

Structures are created as DUT (Data Type Unit) objects via the Add Object dialog.

They begin with the keywords TYPE and STRUCT and end with END_STRUCT and END_TYPE.

ATTENTION:

TYPE in structure declarations must be followed by a “:”.

The syntax for structure declarations is as follows:

TYPE <Structure name>:

STRUCT

<Declaration of variables 1>

...

<Declaration of variables n>

END_STRUCT

END_TYPE

<Structure name> is a type that is recognized throughout the project and can be used like a standard
data type.

Interlocking structures are allowed. The only restriction is that variables may not be assigned to

addresses (the AT declaration is not allowed.).

Example for a structure definition named Polygonline:

TYPE Polygonline:

STRUCT

Start:ARRAY [1..2] OF INT;

Point1:ARRAY [1..2] OF INT;

Point2:ARRAY [1..2] OF INT;

Point3:ARRAY [1..2] OF INT;

Point4:ARRAY [1..2] OF INT;

End:ARRAY [1..2] OF INT;

END_STRUCT

END_TYPE

Initialization of Structures

Example for the initialization of a structure:

Poly_1:polygonline := (Start:=[3,3], Point1 =[5,2], Point2:=[7,3],

Point3:=[8,5], Point4:=[5,7], End := [3,5]);

Initializations with variables are not possible. See an example of the initialization of an array of a

structure under ARRAYS.

Access on Structure Components

You can gain access to structure components using the following syntax:

<Structure name>.<Component name>

So for the above mentioned example of the structure 'polygonline' you can access the component

'start' by Poly_1.Start.

Enumerations

An enumeration is an user-defined data type that is made up of a number of string constants. These

constants are referred to as enumeration values.

4. Programming Reference

 80

Enumeration values are recognized globally in all areas of the project even if they were declared

within a POU.

An enumeration is created as a DUT object via the Add Object dialog.

ATTENTION:

A local enumeration declaration is no longer possible except within TYPE.

Syntax:

TYPE <Identifier>:(<Enum_0> ,<Enum_1>, ...,<Enum_n>)|<Base data type>;

END_TYPE

A variable of type <Identifier> can take on one of the enumeration values <Enum_..> and will be

initialized with the first one. These values are compatible with whole numbers which means that you

can perform operations with them just as you would do with integer variables. You can assign a
number x to the variable. If the enumeration values are not initialized with specific values within the

declaration, counting will begin with 0. When initializing, make sure that the initial values are

increasing within the row of components. The validity of the number will be checked at the time it is
run.

Example:

Definition of two enumerations:

TYPE TRAFFIC_SIGNAL: (red, yellow, green:=10); (* The initial value for

each of the colors is red 0, yellow 1, green 10 *)

END_TYPE

Declaration:

TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;

Use of enumeration TRAFFIC_SIGNAL in a POU:

TRAFFIC_SIGNAL1:=0; (* The value of the traffic signal is red *)

Extensions to the IEC 61131-3 Standard

The type name of enumerations can be used (as a scope operator) to disambiguate the access to an
enumeration constant.

So it is possible to use the same constant in different enumerations.

Example:

Definition of two enumerations:

TYPE COLORS_1: (red, blue);

END_TYPE

TYPE COLORS_2: (green, blue, yellow);

END_TYPE

Use of enumeration value blue in a POU:

Declaration:

colorvar1 : COLORS_1;

colorvar2 : COLORS_2;

Implementation:

(* Possible: *)

colorvar1 := colors_1.blue;

colorvar2 := colors_2.blue;

(* Not Possible: *)

colorvar1 := blue;

colorvar2 := blue;

4. Programming Reference

 81

The base data type of the enumeration - which by default is INT - can be explicitly specified.

Example:

The base data type for enumeration BigEnum should be DINT:

TYPE BigEnum : (yellow, blue, green:=16#8000) DINT;

END_TYPE

Subrange Types

A subrange type is a user defined type whose range of values is only a subset of that of the basic data

type. Notice the possibility of using implicit range boundary checks.

The declaration can be done in a DUT object but also a variable can be directly declared with a

subrange type:

Syntax for the declaration as a DUT object:

TYPE <Name> : <Inttype> (<ug>..<og>) END_TYPE;

Syntax Description

<Name> Must be a valid IEC identifier.

<Inttype> Is one of the data types SINT, USINT, INT, UINT, DINT, UDINT, BYTE,

WORD, DWORD (LINT, ULINT, LWORD).

<ug> Is a constant which must be compatible with the basic type and which sets
the lower boundary of the range types. The lower boundary itself is

included in this range.

<og> Is a constant that must be compatible with the basic type, and sets the

upper boundary of the range types. The upper boundary itself is included in
this basic type.

Table 4-10. Subrange Types

Examples:

TYPE

 SubInt : INT (-4095..4095);

END_TYPE

Direct declaration of a variable with a subrange type:

VAR

 i : INT (-4095..4095);

 ui : UINT (0..10000);

END_VAR

If a value is assigned to a subrange type (in the declaration or in the implementation) but does not

match this range (for example i:=5000 in the upper shown declaration example), an error message

will be issued.

Check Functions

In order to check the range limits during runtime the functions CheckRangeSigned or

CheckRangeUnsigned must be available to the application. Therefore add the object POUs for
implicit checks to the application using the Add Object dialog. Mark the checkbox related to the type

CheckRangeSigned or CheckRangeUnsigned, choose an implementation language and confirm your

settings with Open, whereon the selected function will be opened in the editor corresponding to the

implementation language selected. Independently of that choice the declaration part is preset and may
not be modified except for adding further local variables. A proposal default implementation of the

function that might be modified is given in the ST editor.

The purpose of this check function is the proper treatment of violations of the subrange (for example
by setting a detected error flag or changing the value). The function will be called implicitly as soon

as a variable of subrange type is assigned.

4. Programming Reference

 82

ATTENTION:

In order to maintain the check functionality do not change the declaration part of an implicit check

function.

Example:

The assignment of a variable belonging to a signed subrange type entail an implicit call to

CheckRangeSigned. The default implementation of that function trimming a value to the permissible

range is provided as follows:

Declaration part:

// Implicitly generated code: DO NOT EDIT

FUNCTION CheckRangeSigned : DINT

VAR_INPUT

value, lower, upper: DINT;

END_VAR

Implementation part:

// Implicitly generated code: Only an Implementation suggestion

IF (value < lower) THEN

CheckRangeSigned := lower;

ELSIF(value > upper) THEN

CheckRangeSigned := upper;

ELSE

CheckRangeSigned := value;

END_IF

When called the function gets the following input parameters:

 Value: The value to be assigned to the range type

 Lower: The lower boundary of the range

 Upper: The upper boundary of the range.

As long as the assigned value is within the range, the output of the function is the value itself.

Otherwise -in correspondence to the range violation- either the upper or the lower boundary of the

range will be returned.

The assignment i:=10*y will now be replaced implicitly by:

i := CheckRangeSigned(10*y, -4095, 4095);

If y has the value 1000 for example, the variable i will not be assigned to 10*1000=10000 as

provided by the original implementation, but to the upper boundary of the range, that is 4095.

The same applies to function CheckRangeUnsigned.

NOTE: If neither of the functions CheckRangeSigned or CheckRangeUnsigned is present, no type
checking of subrange types occurs during runtime. In this case variable i could get any value
between –32768 and 32767 at any time.

ATENTION:

The use of the functions CheckRangeSigned and CheckRangeUnsigned may result in an endless

loop, for example if a subrange type is used as increment of a FOR loop that does not match the
subrange.

Example of an endless loop:

VAR

 ui : UINT (0..10000);

END_VAR

4. Programming Reference

 83

FOR ui:=0 TO 10000 DO

...

END_FOR

The FOR loop will never be left as the check function prevents the variable “ui” to be assigned to

values greater than10000.

Operators

IEC Operators and Norm-Extending Functions

MasterTool IEC XE supports all IEC operators. In contrast to the standard functions these operators

are recognized implicitly throughout the project.

Besides the IEC operators also the following operators are supported which are not prescribed by the

standard: ANDN, ORN, XORN, INDEXOF and SIZEOF (see Arithmetic Operators), ADR,

BITADR and content operator (see Address Operators), some Scope Operators.

Operators are used like functions in a POU.

NOTE: At operations with floating point variables the result depends on the currently used target
system.

See the following categories of operators:

 Assignment Operators: :=, MOVE

 Arithmetic Operators

 Bitstring Operators

 Bit-Shift Operators

 Selection Operators

 Comparison Operators

 Address Operators

 Calling Operators

 Type Conversion Functions

 Numeric Functions

 IEC extending Operators

 IEC extending Scope Operators

Arithmetic Operators

The following operators, prescribed by the IEC1131-3 standard, are available:

 ADD

 MUL

 SUB

 DIV

 MOD

 MOVE

There are also two norm-extending operators:

 SIZEOF

 INDEXOF

ADD

IEC Operator: Addition of variables.

Allowed types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL and LREAL.

4. Programming Reference

 84

Two TIME variables can also be added together resulting in another time (for example, t#45s + t#50s

= t#1m35s).

Example in IL:

Example in ST:

var1 := 7+2+4+7;

Example in FBD:

MUL

IEC Operator: Multiplication of variables.

Allowed types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL and LREAL.

Example in IL:

Example in ST:

var1 := 7*2*4*7;

Example in FBD:

SUB

IEC Operator: Subtraction of one variable from another one.

Allowed types s: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,

LINT, ULINT, REAL and LREAL.

A TIME variable may also be subtracted from another TIME variable resulting in third TIME type

variable. Note that negative TIME values are undefined.

Example in IL:

4. Programming Reference

 85

Example in ST:

var1 := 7-2;

Example in FBD:

DIV

IEC Operator: Division of one variable by another one.

Allowed types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,

LINT, ULINT, REAL and LREAL.

Example in IL:

Result in Var1 is 4.

Example in ST:

var1 := 8/2;

Example in FBD:

NOTE: Please notice, that different target systems may behave differently concerning a division by
zero.

NOTE: Observe que a utilização do operador DIV com tipos de dados inteiros retorna apenas o
quociente da divisão. Caso se queira retornar o resto da divisão o operador a ser utilizado é o MOD
descrito a seguir.

Check Functions

In order to check the value of the divisor, for example in order to avoid a division by 0 you may

make use of the provided check functions CheckDivInt, CheckDivLint, CheckDivReal and

CheckDivLReal. After they have been included in the application each division occurring in the
related code will provoke a preceding call to these functions. To include them in the application use

the Add Object dialog. Therein choose the object POUs for implicit checks, mark the checkbox of a

corresponding check function, select an implementation language and confirm your choice with

Open. The selected function will be opened in the editor corresponding to the choice of the
implementation function. Independently of this choice the declaration part of the functions is preset

and must not be changed except for adding local variables. A default implementation of the functions

that might be modified is available in ST.

4. Programming Reference

 86

See the following example for an implementation of the function CheckDivReal:

Declaration part:

// Implicitly generated code: DO NOT EDIT

FUNCTION CheckDivReal : REAL

VAR_INPUT

divisor:REAL;

END_VAR

Implementation part:

// Implicitly generated code: Only an suggestion for implementation.

IF divisor = 0 THEN

CheckDivReal:=1;

ELSE

CheckDivReal:=divisor;

END_IF;

The operator DIV uses the output of function CheckDivReal as divisor. In the following example a
division by 0 is prohibited as the implicitly with 0 initialized value of the divisor D is changed to 1

(by CheckDivReal) prior to the execution of the division. Therefore the result of the division is 799.

PROGRAM MAINPRG

VAR

erg:REAL;

v1:REAL:=799;

d:REAL;

END_VAR

erg:= v1 / d;

MOD

IEC Operator: Modulo Division of one variable by another one.

Allowed types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,

LINT, ULINT. The result of this function will be the remainder of the division. This result will be a

whole number.

Example in IL:

Result in Var1 is 1.

Example in ST:

var1 := 9 MOD 2;

Example in FBD:

MOVE

IEC Operator: Assignment of a variable to another variable of an appropriate type.

As MOVE is available as a box in the graphic editors FBD, LD, CFC, there the (unlocking) EN/EN0
functionality can also be applied on a variable assignment.

4. Programming Reference

 87

Figure 4-9. Example in CFC in Conjunction with the EN/EN0 Function

Only if en_i is TRUE, var1 will be assigned to var2.

Example in IL:

Result is var2 gets value of var.

You get the same result with:

Example in ST:

ivar2 := MOVE(ivar1); (* The same result with: ivar2 := ivar1; *)

SIZEOF

This arithmetic operator is not prescribed by the standard IEC 61131-3.

It can be used to determine the number of bytes required by the given variable x.

The SIZEOF operator returns an unsigned value. The type of the return value will be adapted to the

found size of variable x.

Return value of SIZEOF(x) Data type of the constant implicitly used for

the found size

0 <= size of x < 256 USINT

256 <= size of x < 65536 UINT

65536 <= size of x < 4294967296 UDINT

4294967296 <= size of x ULINT

Table 4-11. SIZEOF Operator

Example in ST:

VAR

arr1:ARRAY[0..4] OF INT;

Var1:INT;

end_var

var1 := SIZEOF(arr1); (* d.h.: var1:=USINT#10; *)

Example in IL:

Result is 10.

INDEXOF

This arithmetic operator is not prescribed by the standard IEC 61131-3.

4. Programming Reference

 88

Perform this function to find the internal index for a POU.

Example in ST:

var1 := INDEXOF(POU2);

Bitstring Operators

The following bitstring operators are available, matching the IEC1131-3 standard:

AND, OR, XOR, NOT.

Bitstring operators compare the corresponding bits of two or several operands.

AND

IEC Bitstring Operator: Bitwise AND of bit operands. If the input bits each are 1, then the resulting

bit will be “1”, otherwise “0”.

Allowed types: BOOL, BYTE, WORD, DWORD, LWORD.

Example in IL:

Result in Var1 is 2#1000_0010.

Example in ST:

VAR

Var1:BYTE;

END_VAR

var1 := 2#1001_0011 AND 2#1000_1010;

Example in FBD:

OR

IEC Bitstring Operator: Bitwise OR of bit operands. If at least one of the input bits is 1, the resulting

bit will be “1”, otherwise “0”.

Allowed types: BOOL, BYTE, WORD or DWORD, LWORD.

Example in IL:

Result in var1 is 2#1001_1011 (BYTE type).

Example in ST:

Var1 := 2#1001_0011 OR 2#1000_1010;

Example in FBD:

4. Programming Reference

 89

XOR

IEC Bitstring Operator: Bitwise XOR operation of bit operands. If only one of the input bits is 1, then
the resulting bit will be “1”; if both or none are “1”, the resulting bit will be “0”.

Allowed types: BOOL, BYTE, WORD, DWORD, LWORD.

NOTE: Notice the behavior of the XOR function in extended form, that means if there are more than
2 inputs. The inputs will be checked in pairs and the particular results will then be compared again in
pairs (this complies with the standard, but may not be expected by the user).

Example in IL:

Result is 2#0001_1001 (BYTE type).

Example in ST:

Var1 := 2#1001_0011 XOR 2#1000_1010;

Example in FBD:

NOT

IEC Bitstring Operator IEC: Bitwise NOT operation of a bit operand. The resulting bit will be “1”, if

the corresponding input bit is “0” and vice versa.

Allowed types: BOOL, BYTE, WORD, DWORD, LWORD.

Example in IL:

Result in Var1 is 2#0110_1100 (BYTE type).

Example in ST:

Var1 := NOT 2#1001_0011;

Example in FBD:

Bit-Shift Operators

The following bit-shift operators, matching the IEC1131-e standard, are available:

SHL, SHR, ROL and ROR.

4. Programming Reference

 90

SHL

IEC Operator: Bitwise left-shift of an operand.

erg:= SHL (in, n)

in: Operand to be shifted to the left.

n: Number of bits, by which in gets shifted to the left.

If n exceeds the data type width, BYTE, WORD, DWORD and LWORD operands will be filled with

zeros, operands of signed data types, like for example INT, will get an arithmetic shift, that means

they will be filled with the value of the topmost bit.

NOTES:
- Please note, that the amount of bits, which is noticed for the arithmetic operation, is pretended by
the data type of the input variable ! If the input variable is a constant the smallest possible data type
is noticed. The data type of the output variable has no effect at all on the arithmetic operation.
- See in the following example in hexadecimal notation that you get different results for erg_byte
and erg_word depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables in_byte and in_word are the same.

Example in ST:

PROGRAM shl_st

VAR

 in_byte : BYTE:=16#45;

 in_word : WORD:=16#45;

 erg_byte : BYTE;

 erg_word : WORD;

 n: BYTE :=2;

END_VAR

erg_byte:=SHL(in_byte,n); (* Result is 16#14 *)

erg_word:=SHL(in_word,n); (* Result is 16#0114 *)

Example in FBD:

Example in IL:

SHR

IEC Operator: Bitwise right-shift of an operand.

erg:= SHR (in, n)

in: Operand to be shifted to the right.

n: Number of bits, by which in gets shifted to the right.

If n exceeds the data type width, operands of type BYTE, WORD, DWORD and LWORD will be

filled with zeros, operands of signed data types, like for example INT, will get an arithmetic shift,
that means they will be filled with the value of the topmost bit.

4. Programming Reference

 91

NOTES:
- Please note, that the amount of bits, which is noticed for the arithmetic operation, is pretended by
the data type of the input variable ! If the input variable is a constant the smallest possible data type
is noticed. The data type of the output variable has no effect at all on the arithmetic operation.
- See the following example in hexadecimal notation to notice the results of the arithmetic operation
depending on the type of the input variable (BYTE or WORD).

Example in ST:

PROGRAM shr_st

VAR

 in_byte : BYTE:=16#45;

 in_word : WORD:=16#45;

 erg_byte : BYTE;

 erg_word : WORD;

 n: BYTE :=2;

END_VAR

erg_byte:=SHR(in_byte,n); (* Result is 11 *)

erg_word:=SHR(in_word,n); (*Result is 0011 *)

Example in FBD:

Example in IL:

ROL

IEC Operator: Bitwise rotation of an operand to the left.

erg:= ROL (in, n)

Allowed data types: BYTE, WORD, DWORD, LWORD.

In will be shifted one bit position to the left n times while the bit that is furthest to the left will be
reinserted from the right.

NOTES:
- Please note, that the amount of bits, which is noticed for the arithmetic operation, is pretended by
the data type of the input variable ! If the input variable is a constant the smallest possible data type
is noticed. The data type of the output variable has no effect at all on the arithmetic operation.
- See in the following example in hexadecimal notation that you get different results for "erg_byte"
and "erg_word" depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables "in_byte" and "in_word" are the same.

Example in ST:

PROGRAM rol_st

VAR

 in_byte : BYTE:=16#45;

 in_word : WORD:=16#45;

 erg_byte : BYTE;

 erg_word : WORD;

 n: BYTE :=2;

END_VAR

erg_byte:=ROL(in_byte,n); (*Result is 16#15 *)

4. Programming Reference

 92

erg_word:=ROL(in_word,n); (* Result is 16#0114 *)

Example in FBD:

Example in IL:

ROR

IEC Operator: Bitwise rotation of an operand to the right.

erg = ROR (in, n)

Allowed data types: BYTE, WORD, DWORD, LWORD.

In will be shifted one bit position to the right n times while the bit that is furthest to the left will be

reinserted from the left.

NOTES:
- Please note, that the amount of bits, which is noticed for the arithmetic operation, is pretended by
the data type of the input variable ! If the input variable is a constant the smallest possible data type
is noticed. The data type of the output variable has no effect at all on the arithmetic operation.
- See in the following example in hexadecimal notation that you get different results for "erg_byte"
and "erg_word" depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables "in_byte" and "in_word" are the same.

Example in ST:

PROGRAM ror_st

VAR

 in_byte : BYTE:=16#45;

 in_word : WORD:=16#45;

 erg_byte : BYTE;

 erg_word : WORD;

 n: BYTE :=2;

END_VAR

erg_byte:=ROR(in_byte,n); (* Result is 16#51 *)

erg_word:=ROR(in_word,n); (* Result is 16#4011 *)

Example in FBD:

Example in IL:

Selection Operators

All selection operations can also be performed with variables. For purposes of clarity we will limit

our examples to the following which use constants as operators: SEL, MAX, MIN, LIMIT, MUX.

4. Programming Reference

 93

SEL

IEC Selection Operator: Binary Selection. G determines whether IN0 or IN1 is assigned to OUT.

OUT := SEL(G, IN0, IN1)

OUT := IN0; (*If G=FALSE*)

OUT := IN1; (*If G=TRUE*)

Allowed data types:

IN0, IN1 and OUT: any type;

G: BOOL;

Example in IL:

Result is 4.

Result is 3.

Example in ST:

Var1:=SEL(TRUE,3,4); (* Result is 4 *)

Example in FBD:

NOTE: Note that an expression occurring ahead of IN1 or IN2 will not be processed if IN0 is TRUE.

MAX

IEC Selection Operator: Maximum function. Returns the greater of the two values.

OUT := MAX(IN0, IN1);

IN0, IN1 e OUT and OUT can be any type of variable.

Example in IL:

Result is 90.

Example in ST:

Var1:=MAX(30,40); (*Result is 40 *)

4. Programming Reference

 94

Var1:=MAX(40,MAX(90,30)); (*Result is 90 *)

Example in FBD:

MIN

IEC Selection Operator: Minimum function. Returns the lesser of the two values.

OUT := MIN(IN0, IN1)

IN0, IN1 and OUT can be any type of variable.

Example in IL:

Result is 30.

Example in ST:

Var1:=MIN(90,30); (*Result is 30 *);

Var1:=MIN(MIN(90,30),40); (*Result is 30 *);

Example in FBD:

LIMIT

IEC Selection Operator: limits.

OUT := LIMIT(Min, IN, Max)

Which can be written as:

OUT := MIN (MAX (IN, Min), Max);

Max is the upper and Min the lower limit for the result. Should the value IN exceed the upper limit

Max, LIMIT will return Max. Should IN fall below Min, the result will be Min.

IN and OUT can be any type of variable.

Example in IL:

Result is 80.

Example in ST:

Var1:=LIMIT(30,90,80); (*Result is 80 *);

Example in FBD:

4. Programming Reference

 95

MUX

IEC Selection Operator: multiplexer operator.

OUT := MUX(K, IN0,...,INn)

Which can be written as:

OUT := INK;

IN0, ..., INn and OUT can be any type of variable. K must be BYTE, WORD, DWORD, LWORD,

SINT, USINT, INT, UINT, DINT, LINT, ULINT or UDINT. MUX selects the Kth value from

among a group of values.

Example in IL:

Result is 30.

Example in ST:

Var1:=MUX(0,30,40,50,60,70,80); (* Result is 30 *);

Example in FBD:

Result is 30.

NOTE: Note that an expression occurring ahead of an input other than INK will not be processed to
save run time. Only in simulation mode all expressions will be executed.

Comparison Operators

The following operators, matching the IEC1131-3 standard are available:

GT, LT, LE, GE, EQ, NE

These are Boolean operators, each comparing two inputs (first and second operand).

4. Programming Reference

 96

GT

IEC Comparison Operator: Greater than.

A Boolean operator which returns the value TRUE when the value of the first operand is greater than
that of the second. The operands can be of any basic data type.

Example in IL:

Result is FALSE.

Example in ST:

VAR1 := 20 > 30 > 40 > 50 > 60 > 70;

Example in FBD:

LT

IEC Comparison Operator: Less than.

A Boolean operator that returns the value TRUE when the value of the first operand is less than that

of the second. The operands can be of any basic data type.

Example in IL:

Result is TRUE.

Example in ST:

VAR1 := 20 < 30;

Example in FBD:

LE

IEC Comparison Operator: Less than or equal to.

A Boolean operator that returns the value TRUE when the value of the first operand is less than or

equal to that of the second. The operands can be of any basic data type.

Example in IL:

Result is TRUE.

4. Programming Reference

 97

Example in ST:

VAR1 := 20 <= 30;

Example in FBD:

GE

IEC Comparison Operator: Greater than or equal to.

A Boolean operator that returns the value TRUE when the value of the first operand is greater than or

equal to that of the second. The operands can be of any basic data type.

Example in IL:

Result is TRUE.

Example in ST:

VAR1 := 60 >= 40;

Example in FBD:

EQ

IEC Comparison Operator: Equal to.

A Boolean operator that returns the value TRUE when the operands are equal. The operands can be
of any basic data type.

Example in IL:

Result is TRUE.

Example in ST:

VAR1 := 40 = 40;

Example in FBD:

NE

IEC Comparison Operator: Not equal to.

4. Programming Reference

 98

A Boolean operator that returns that value TRUE when the operands are not equal. The operands can

be of any basic data type.

Example in IL:

Result is FALSE.

Example in ST:

VAR1 := 40 <> 40;

Example in FBD:

Address Operators

ADR and BITADR and the content operator "^" are norm-extending address operators available in
MasterTool IEC XE.

ADR

This address operator is not prescribed by the standard IEC 61131-3.

ADR returns the address of its argument in a DWORD. This address can be sent to manufacturing

functions to be treated as a pointer or it can be assigned to a pointer within the project.

NOTE: The ADR-Operator can be used with function names, program names, function block names
and method names, thus replacing the INDEXOF operator.

See in this context 'Function pointers'. Notice anyway that function pointers can be passed to external

libraries, but there is no possibility to call a function pointer within MasterTool IEC XE. In order to

enable a system call (runtime system) the respective property (category Build) must be set for the
function object. See Function Pointers.

Example in ST:

dwVar:=ADR(bVAR);

Example in IL:

NOTE: After an Online Change there might be changes concerning the data on some addresses.
Notice this in this case of using pointers on addresses.

BITADR

This address operator is not prescribed by the standard IEC 61131-3.

BITADR returns the bit offset within the segment in a DWORD. Notice that the offset value depends
on whether the option byte addressing in the target settings is activated or not.

VAR

var1 AT %IX2.3:BOOL;

4. Programming Reference

 99

bitoffset: DWORD;

END_VAR

Example in ST:

bitoffset:=BITADR(var1); (*Result: 16#80000013 *)

Example in IL:

NOTE: After an Online Change there might be changes concerning the data on some addresses.
Please notice this in this case of using pointers on addresses.

Content Operator

This address operator is not prescribed by the standard IEC 61131-3.IEC. A pointer can be
dereferenced by adding the content operator “^” after the pointer identifier.

Example in ST:

pt:POINTER TO INT;

var_int1:INT;

var_int2:INT;

pt := ADR(var_int1);

var_int2:=pt^;

NOTE: After an Online Change there might be changes concerning the data on some addresses.
Please notice this in this case of using pointers on addresses.

Calling Operator

CAL

IEC Operator for calling a function block or a program.

Use CAL in IL to call up a function block instance. The variables that will serve as the input

variables are placed in parentheses right after the name of the function block instance.

Example:

Calling up the instance “Inst” from a function block where input variables Par1 and Par2 are 0 and

TRUE respectively.

CAL INST(PAR1 := 0, PAR2 := TRUE)

Type Conversion Functions

It is forbidden to implicitly convert from a "larger" type to a "smaller" type (for example from INT to
BYTE or from DINT to WORD. One can basically convert from any elementary type to any other

elementary type.

Syntax:

<elem.Typ1>_TO_<elem.Typ2>

Please notice that at ...TO_STRING conversions the string is generated left-justified. If it is defined
to short, it will be cut from the right side.

The following type conversions are supported:

 BOOL_TO Conversions

 TO_BOOL Conversions

 Conversion between integral number types

4. Programming Reference

 100

 REAL_TO-/ LREAL_TO Conversions

 TIME_TO/TIME_OF_DAY Conversions

 DATE_TO/DT_TO Conversions

 STRING_TO Conversions

 TRUNC (conversion to DINT)

 TRUNC_INT

 ANY_NUM_TO_<numeric datatype>

 ANY_TO_<any datatype>Conversions BOOL_TO

BOOL_TO Conversions

IEC Operator: Converting from type BOOL to any other type.

Syntax for a BOOL_TO conversion operator:

BOOL_TO_<Data type>

For number types the result is “1”, when the operand is TRUE, and “0”, when the operand is FALSE.

For the STRING type the result is ‚TRUE, when the operand is TRUE or FALSE when the operand

is FALSE.

Examples in IL:

Result is 1.

Result is TRUE.

Result is T#1ms.

Result is TOD#00:00:00.001.

Result is D#1970-01-01.

Result is DT#1970-01-01-00:00:01.

Examples in ST:

i:=BOOL_TO_INT(TRUE); (* Result is 1 *)

4. Programming Reference

 101

str:=BOOL_TO_STRING(TRUE); (* Result is "TRUE" *)

t:=BOOL_TO_TIME(TRUE); (* Result is T#1ms *)

tof:=BOOL_TO_TOD(TRUE); (* Result is TOD#00:00:00.001 *)

dat:=BOOL_TO_DATE(FALSE); (* Result is D#1970 *)

dandt:=BOOL_TO_DT(TRUE); (* Result is DT#1970-01-01-00:00:01 *)

Examples in FBD:

Result is 1.

Result is TRUE.

Result is T#1ms.

Result is TOD#00:00:00.001.

Result is D#1970-01-01.

Result is DT#1970-01-01-00:00:01.

TO_BOOL Conversions

IEC Operator: Converting from another variable type to BOOL

Syntax for a TO_BOOL conversion operator:

<Data type>_TO_BOOL

The result is TRUE when the operand is not equal to 0. The result is FALSE when the operand is
equal to 0.

The result is TRUE for STRING type variables when the operand is "TRUE", otherwise the result is

FALSE.

Examples in IL:

Result is TRUE.

4. Programming Reference

 102

Result is FALSE.

Result is TRUE.

Result is TRUE.

Examples in FBD:

Result is TRUE.

Result is FALSE.

Result is TRUE.

Result is TRUE.

Examples in ST:

b := BYTE_TO_BOOL(2#11010101); (* Result is TRUE *)

b := INT_TO_BOOL(0); (* Result is FALSE *)

b := TIME_TO_BOOL(T#5ms); (* Result is TRUE *)

b := STRING_TO_BOOL(TRUE); (* Result is TRUE *)

Conversion between Integral Data Types

Conversion from an integral number type to another number type.

Syntax for the conversion operator:

<INT data type>_TO_<INT data type>

When you perform a type conversion from a larger to a smaller type, you risk losing some

information. If the number you are converting exceeds the range limit, the first bytes for the number

will be ignored.

Example in ST:

si := INT_TO_SINT(4223); (* Result is 127 *)

4. Programming Reference

 103

If you save the integer 4223 (16#107f represented in hexadecimal) as a SINT variable, it will appear

as 127 (16#7f represented in hexadecimal).

Example in IL:

Example in FBD:

REAL_TO / LREAL_TO Conversions

IEC Operator: Converting from the variable type REAL or LREAL to a different type.

The value will be rounded up or down to the nearest whole number and converted into the new

variable type. Exceptions to this are the variable types STRING, BOOL, REAL and LREAL.

NOTE: If a REAL or LREAL is converted to SINT, USINT, INT, UINT, DINT, UDINT, LINT or
ULINT and the value of the real number is out of the value range of that integer, the result will be
undefined and will depend on the target system. Even an exception is possible in this case! In order
to get target-independent code, handle any range exceedance by the application. If the
REAL/LREAL number is within the integer value range, the conversion will work on all systems in
the same way.

Notice at a conversion to type STRING that the total number of digits is limited to 16. If the
REAL/LREAL-number has more digits, then the sixteenth will be rounded. If the length of the

STRING is defined to short, it will be cut beginning from the right end.

When you perform a type conversion from a larger to a smaller type, you risk losing some
information.

Example in ST:

i := REAL_TO_INT(1.5); (* Result is 2 *)

j := REAL_TO_INT(1.4); (* Result is 1 *)

i := REAL_TO_INT(-1.5); (* Result is -2 *)

j := REAL_TO_INT(-1.4); (* Result is -1 *)

Example in IL:

Example in FBD:

TIME_TO/TIME_OF_DAY Conversions

IEC Operator: from the variable type TIME or TIME_OF_DAY to a different type.

Syntax for the conversion operator:

<TIME data type>_TO_<Data type>

The time will be stored internally in a DWORD in milliseconds (beginning with 12:00 A.M. for the

TIME_OF_DAY variable). This value will then be converted.

4. Programming Reference

 104

When you perform a type conversion from a larger to a smaller type, you risk losing some

information.

For the STRING type variable, the result is a time constant.

Examples in IL:

Result is T#12ms.

Result is 300000.

Result is 12.

Examples in ST:

str :=TIME_TO_STRING(T#12ms); (* Result is T#12ms *)

dw:=TIME_TO_DWORD(T#5m); (* Result is 300000 *)

si:=TOD_TO_SINT(TOD#00:00:00.012); (* Result is 12 *)

Examples in FBD:

DATE_TO/DT_TO Conversions

IEC Operator: Converting from the variable type DATE or DATE_AND_TIME to a different type.

Syntax for the conversion operator:

<DATE data type>_TO_<Data type>

The date will be stored internally in a DWORD in seconds since Jan. 1, 1970. This value will then be
converted.

When you perform a type conversion from a larger to a smaller type, you risk losing some

information.

For STRING type variables, the result is the date constant.

Examples in IL:

4. Programming Reference

 105

Result is FALSE.

Result is 29952.

Result is 129.

Result is DT#1998-02-13-14:20.

Examples in ST:

b :=DATE_TO_BOOL(D#1970-01-01); (* Result is FALSE *)

i :=DATE_TO_INT(D#1970-01-15); (* Result is 29952 *)

byt :=DT_TO_BYTE(DT#1970-01-15-05:05:05); (* Result is 129 *)

str:=DT_TO_STRING(DT#1998-02-13-14:20); (* Result is DT#1998-02-13-

14:20 *)

Examples in FBD:

STRING_TO Conversions

IEC Operator: Converting from the variable type STRING to a different type.

The conversion works according to the standard C compilation mechanism: STRING to INT and then

INT to BYTE. The higher byte will be cut, thus only values of 0-255 result.

This way it is possible on most processors to generate optimal code because the conversion can be
performed by a single machine instruction.

Syntax for the conversion operator:

STRING_TO_<Data type>

The operand from the STRING type variable must contain a value that is valid in the target variable

type, otherwise the result will be “0”.

4. Programming Reference

 106

Result is TRUE.

Result is 0.

Result is T#117ms.

Result is 244.

Examples in ST:

b :=STRING_TO_BOOL(TRUE); (* Result is TRUE *)

w :=STRING_TO_WORD(abc34); (* Result is 0 *)

t :=STRING_TO_TIME(T#127ms); (* Result is T#127ms *)

bv :=STRING:TO_BYTE(500); (* Result is 244 *)

Examples in FBD:

Result is TRUE.

Result is 0.

Result is T#127ms.

Result is 244.

TRUNC

IEC Operator: Converting from REAL to DINT. The whole number portion of the value will be used.

NOTE: The TRUNC operator converts from REAL to INT. For this reason when importing a
previous version project TRUNC automatically will be replaced by TRUNC_INT.

4. Programming Reference

 107

When you perform a type conversion from a larger to a smaller type, you risk losing some

information.

Example in IL:

Examples in ST:

diVar:=TRUNC(1.9); (* Result is 1 *)

diVar:=TRUNC(-1.4); (* Result is -1 *)

TRUNC_INT

IEC Operator: Converting from REAL to DINT. The whole number portion of the value will be used.

NOTE: TRUNC_INT corresponds to traditional TRUNC operator.

When you perform a type conversion from a larger to a smaller type, you risk losing some
information.

Example in IL:

Examples in ST:

iVar:=TRUNC_INT(1.9); (* Result is 1 *)

iVar:=TRUNC_INT(-1.4); (* Result is -1 *)

ANY...TO Conversions

An IEC Operator from any data type, and more specifically from any numeric data type to another

data type. A reasonable choice of data types is assumed.

Syntax:

ANY_NUM_TO_<Numeric data type>

ANY_TO_<Any data type>

Example:

Conversion from a variable of data type REAL to INT:

re : REAL := 1.234;

i : INT := ANY_TO_INT(re)

Numeric Functions

The following numeric IEC operators are available:

ABS, SQRT, LN, LOG, EXP, SIN, COS, TAN, ASIN, ACOS, ATAN and EXPT.

ABS

IEC Operator: Returns the absolute value of a number. ABS(-2) returns 2.

In- and output can be of any numeric basic data type.

Example in IL:

4. Programming Reference

 108

Result in "i" is 2.

 Example in ST:

i:=ABS(-2);

Example in FBD:

SQRT

IEC Operator: Returns the square root of a number.

The input variable can be of any numeric basic data type, the output variable must be type REAL or
LREAL.

Example in IL:

Result in "q" is 4.

Example in ST:

q:=SQRT(16);

Example in FBD:

LN

IEC Operator: Returns the natural logarithm of a number.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result in "q" is 3,80666.

Example in ST:

q:=LN(45);

Example in FBD:

4. Programming Reference

 109

LOG

IEC Operator: Returns the logarithm of a number in base 10.

The input variable can be of any numeric basic data type, the output variable must be type REAL or
LREAL.

Example in IL:

Result in "q" is 2,49762.

Example in ST:

q:=LOG(314.5);

Example in FBD:

EXP

IEC Operator: Returns the exponential function.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result in "q" is 7,389056.

Example in ST:

q:=EXP(2);

Example in FBD:

SIN

IEC Operator: Returns the sine of a number.

The input variable can be of any numeric basic data type, the output variable must be type REAL or
LREAL.

Example in IL:

4. Programming Reference

 110

Result in "q" is 0,479426.

Example in ST:

q:=SIN(0.5);

Example in FBD:

COS

IEC Operator: Returns the cosine of number. The value is calculated in arch minutes.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result in "q" is 0.877583.

Example in ST:

q:=COS(0.5);

Example in FBD:

TAN

IEC Operator: Returns the tangent of a number. The value is calculated in arch minutes.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result in “q” is 0,546302.

Example in ST:

q:=TAN(0.5);

Example in FBD:

4. Programming Reference

 111

ASIN

IEC Operator: Returns the arc sine (inverse function of sine) of a number.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result in “q” is 0,523599.

Example in ST:

q:=ASIN(0.5);

Example in FBD:

ACOS

IEC Operator: Returns the arc cosine (inverse function of cosine) of a number. The value is

calculated in arch minutes.

The input variable can be of any numeric basic data type, the output variable must be type REAL or
LREAL.

Example in IL:

Result in "q" is 1,0472.

Example in ST:

q:=ACOS(0.5);

Example in FBD:

ATAN

IEC Operator: Returns the arc tangent (inverse function of tangent) of a number. The value is

calculated in arch minutes.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

4. Programming Reference

 112

Result in "q" is 0,463648.

Example in ST:

q:=ATAN(0.5);

Example in FBD:

EXPT

IEC Operator: Exponentiation of a variable with another variable.

OUT = IN1IN2.

The input variable can be of any numeric basic data type, the output variable must be type REAL or

LREAL.

Example in IL:

Result is 49.

Example in ST:

var1 := EXPT(7,2);

Example in FBD:

IEC Extending Operators

Additionally to IEC operators, the MasterTool IEC XE supports the operator "__ISVALIDREF."

__ISVALIDREF

This operator is not required by IEC 61131-3. It can be used to verify if the reference points to a

valid value. To obtain information about its usage and examples, see Check For Valid References.

Norm-Extending Scope Operators

In extension to the IEC operators there are several possibilities to disambiguate the access to
variables or modules if the variables or module name is used multiple times within the scope of a

project. To define the respective namespace the following scope operators can be used:

 “.” (global scope operator)

 “<global variable list name>”

 “<library name>”

 “<enumeration name>”

4. Programming Reference

 113

Global Scope Operator

Scope Operator: Extension to the IEC 61131-3 standard.

An instance path starting with “.” opens a global scope (namespace). So, if there is a local variable
with the same name “<var name>” as a global variable “.<var name>” will refer to the global

variable.

Global Variable List Name

Scope Operator: Extension to the IEC 61131-3 standard.

The name of a global variable list can be used as a namespace for the variables enclosed in this list.

Thus it is possible to declare variables with identical names in different global variable lists and by

preceding the variable name by “<globalvariable list name>” it is possible to access the desired one.

Example:

The global variables lists globlist1 and globlist2 each contain a variable named varx. In the following

line varx out of globlist2 is copied to varx in globlist1:

globlist1.varx := globlist2.varx; (* In this code line *)

If a variable name declared in more than one global variable lists is referenced without the global
variable list name as a preceding operator, an error message will be output.

Library Namespace

Scope Operator: Extension to the IEC 61131-3 standard.

The library namespace can be used to explicitly access the library components. Example: If a library

which is included in a project, contains a module “fun” and there is also a POU “fun” defined locally

in the project, then add the “namespace” of the library can be added to the module-name in order to

make the access unique. The syntax is: “<namespace>.<module name>”, for example “lib1.fun”.

By default the namespace of a library is identic with the library name, however you can define

another one either in the Project Information when creating a library project, or later in the

Properties dialog for a library.

Example:

There is a function fun1 in library lib. There is also a function fun1 declared in the project. By default

the namespace of library lib is named lib:

res1 := fun(in := 12); // call of the project function fun.

res2 := lib.fun(in := 12); // call of the library function fun.

Enumeration Name

Scope Operator: Extension to the IEC 61131-3 standard.

The type name of enumerations can be used to disambiguate the access to an enumeration constant.

In this case <enumeration name>. precedes the constant name. So it is possible to use the same

constant in different enumerations.

Example:

The constant Blue is a component of enumeration “Colors” as well as of enumeration Feelings.

color := Colors.Blue; // Access to enum value Blue in type Colors.

feeling := Feelings.Blue; // Access to enum value Blue in type Feelings.

Operands

The following can be used as an operand:

4. Programming Reference

 114

 Constant (BOOL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME, number,

REAL/LREAL, STRING, Typed Literals)

 Variable

 Addresses

 Functions

Constants

BOOL Constants

BOOL constants are the logical values TRUE and FALSE.

See also: BOOL (Standard Data Types).

TIME Constants

TIME constants are generally used to operate the standard timer modules. Besides the time constant

TIME, which is of size 32 Bit and matching the IEC 61131-3 standard, LTIME is supported as an

extension to the standard as time base for high resolution timers. LTIME is of size 64 Bit and

resolution nanoseconds.

Syntax for TIME constant:

t#<Time declaration>

Instead of "t#" also the following can be used: "T#", "time", "TIME".

The time declaration can include the following time units. These must be used in the following

sequence, but it is not required to use all of them:

 “d”: days

 “h”: hours

 “m”: minutes

 “s”: seconds

 “ms”: milliseconds

Examples of correct TIME constants in a ST assignment:

TIME1 := T#14ms;

TIME1 := T#100S12ms; (*The highest component may be allowed to exceed its

limit *)

TIME1 := t#12h34m15s;

The following would be incorrect:

TIME1 := t#5m68s; (* Limit exceeded in a lower component *)

TIME1 := 15ms; (* T# is missing *)

TIME1 := t#4ms13d; (* Incorrect order of entries *)

Syntax for LTIME constant:

LTIME#<Time declaration>

The time declaration can include the time units as used with the TIME constant (see above) and

additionally:

 “us” : microseconds

 “ns” : nanoseconds

Examples of correct LTIME constants in a ST assignment:

LTIME1 := LTIME#1000d15h23m12s34ms2us44ns

LTIME1 := LTIME#3445343m3424732874823ns

See also: Time Data Types.

4. Programming Reference

 115

DATE Constants

These constants can be used to enter dates.

Syntax:

d#<Date declaration>

Instead of “d#” also the following can be used: “D#”, “date#”, “DATE#”.

The date declaration is to be entered in format <year-month-day>.

DATE values are internally handled as DWORD values, containing the time span in seconds since

01.01.1970, 00:00 clock.

Examples:

DATE#1996-05-06

d#1972-03-29

See also: Time Data Types.

TIME_OF_DAY Constants

Use this type of constant to store times of the day.

Syntax:

tod#<Time declaration>

Instead of “tod#” also the following can be used: “TOD#”, “time_of_day”, “TIME_OF_DAY”.

The time declaration is to be entered in format <hour:minute:second>.

Seconds can be entered as real numbers, that is also fractions of a second can be specified.

TIME_OF_DAY values are internally handled as DWORD values, containing the time span in

milliseconds since 00:00 clock.

Examples:

TIME_OF_DAY#15:36:30.123

tod#00:00:00

See also: Time Data Types.

DATE_AND_TIME Constants

DATE constants and TIME_OF_DAY constants can also be combined to form so-called

DATE_AND_TIME constants.

Syntax:

dt#< date and time declaration >

Instead of “dt#” also the following can be used: “DT#”, “date_and_time”, “DATE_AND_TIME”.

The date and time declaration is to be entered in format <year-month-day-hour:minute:second>.

Seconds can be entered as real numbers, that is also fractions of a second can be specified.

DATE_AND_TIME values are internally handled as DWORD values, containing the time span in

seconds since 01.01.1970, 00:00 clock.

Examples:

DATE_AND_TIME#1996-05-06-15:36:30

dt#1972-03-29-00:00:00

See also: Time Data Types.

4. Programming Reference

 116

Number Constants

Number values can appear as binary numbers, octal numbers, decimal numbers and hexadecimal

numbers.

If an integer value is not a decimal number, the base must be followed by the number sign (#) in front

of the integer constant.

The values for the numbers 10-15 in hexadecimal numbers will be represented by the letters A-F.

You may include the underscore character within the number.

Examples:

14 (* decimal number *)

2#1001_0011 (* dual number *)

8#67 (* octal number *)

16#A (* hexadecimal number *)

These number values can be of type BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL or LREAL.

Implicit conversions from larger to smaller variable types are not permitted. This means that a DINT

variable cannot simply be used as an INT variable. You must use the type conversion.

REAL/LREAL Constants

REAL and LREAL constants can be given as decimal fractions and represented exponentially. Use

the standard American format with the decimal point to do this.

Example:

7.4 (* instead of 7,4 *)

1.64e+009 (* instead of 1,64e+009 *)

STRING Constants

A string is a sequence of characters.

STRING constants are preceded and followed by single quotation marks. You may also enter blank

spaces and special characters (UMLAUTS for instance). They will be treated just like all other

characters.

Notice the following possibilities of using the dollar sign “$” in string constants:

Sign Result

$< two hex numbers > Hexadecimal representation of the eight bit character code

$$ Dollar sign

$' Single quotation mark

$L or $l Line feed

$N or $n New line

$P or $p Page feed

$R or $r Line break

$T or $t Tab

Table 4-12. Possibilities of Use for $ Signal

Examples:

' Abby and Craig '

':-)'

'costs ($$)'

4. Programming Reference

 117

Typed Literals

Basically in using IEC constants the smallest possible data type will be used. If another data type

must be used, this can be achieved with the help of typed literals without the necessity of explicitly
declaring the constants.

For this purpose the constant will be provided with a prefix which determines the type.

Syntax:

<TYPE>#<Literal>

<TYPE> specifies the desired data type; possible entries are: BOOL, SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT, DWORD, REAL, LREAL. The type must be written in uppercase

letters.

<Literal> specifies the constant. The data entered must fit within the data type specified under
<TYPE>.

Example:

var1:=DINT#34;

If the constant cannot be converted to the target type without data loss, an error message will be

issued.

Typed literals can be used wherever normal constants can be used.

Variables

Variables can be declared either locally in the declaration part of a POU or in a Global Variable List.

See Variables Declaration for information on the declaration of a variable, including the rules
concerning the variable identifier and multiple use.

Variables can be used anywhere the declared type allows for them.

You can access available variables through the Input Assistant.

Accessing Variables

Syntax:

Use the following syntax for accessing two-dimensional array:

<ARRAY NAME>[INDEX1, INDEX2]

Structure variables:

<STRUCTURE NAME>.<VARIABLE NAME>

Block and program variables:

<FUNCTION BLOCK NAME>.<VARIABLE NAME>

Addressing Bits

In integer variables individual bits can be accessed. For this purpose the index of the bit to be

addressed is appended to the variable, separated by a dot. The bit-index can be given by any constant.

Indexing is 0-based.

Syntax:

<Variable name>.<Bit index>

Example:

a : INT;

b : BOOL;

4. Programming Reference

 118

...

a.2 := b;

The third bit of the variable A will be set to the value of the variable B.

If the index is greater than the bit width of the variable, the following error message will be issued:

“Index '<n>' outside the valid range for variable '<var>'!”

Bit addressing is possible with the following variable types: SINT, INT, DINT, USINT, UINT,
UDINT, BYTE, WORD, DWORD.

If the variable type does not allow bit accessing, the following error message will be issued: “Invalid

data type '<type>' for direct indexing”.

A bit access must not be assigned to a VAR_IN_OUT variable.

Bitaccess Via a Global Constant

If you have declared a global constant defining the bit-index, you can use this constant for a

bitaccess.

Examples for a bit access via a global constant on a variable and on a structure variable:

Declaration in Global Variables List

Variable Enable defines which bit should be accessed:

VAR_GLOBAL CONSTANT

enable:int:=2;

END_VAR

Example 1, Bit access on an integer variable:

Declaration in POU:

VAR

xxx:int;

END_VAR

Bitaccess:

xxx.enable:=true;(* The third bit in variable xxx will be set TRUE *)

Example 2, Bit access on an integer structure component:

Declaration of structure stru1:

TYPE stru1 :

STRUCT

bvar:BOOL;

rvar:REAL;

wvar:WORD;

{bitaccess enable 42 'Start drive'}

END_STRUCT

END_TYPE

Declaration in POU:

VAR

x:stru1;

END_VAR

Bit access:

x.wvar.enable:=true;

This will set TRUE the 42. bit in variable x. Since bvar has 8 bits and rvar has 32 bits, the bitaccess

will be done on the second bit of variable wvar, which as a result will get value 4.

4. Programming Reference

 119

Address

NOTE: Online change might change the contents on addresses. Please notice this when using
pointers on addresses.

Memory Location

You can use any supported size to access the memory location.

For example, the address %MD48 would address bytes numbers 192, 193, 194, and 195 in the
memory location area (48 * 4 = 192). The number of the first byte is 0. The table below shows the

corresponding memory location dependent on the size (X: bit, B: byte, W: word, D: dword) for IEC

addressing.

Examples:

 Address

%MX 96.0 - 96.7 96.8 - 192.15 97.0 - 97.7 97.8 - 97.15

%MB 192 193 194 195

%MW 96 97

%MD 48

Table 4-13. Examples of Memory Positions

You can access words, bytes and even bits in the same way: the address %MX96.0 allows you to

access the first bit in the 96th word (Bits are generally saved wordwise).

See Address for further information on addressing.

NOTE: Online Change might change the contents on addresses. Please notice this when using
pointers on addresses.

Address

When specifying an address, the memory location and size are indicated by special character
sequences.

Syntax:

Address with bit:

%<Memory area prefix><Prefix size><number.number>

Address without bit:

%<Memory area prefix><Prefix size><number.number>

Type Description

I Input (physical inputs via input driver, "sensors ")

Q Output (physical outputs via output driver, "actors ")

M Memory location

Table 4-14. Supported Memory Area Prefixes

Type Description

X Single bit

B Byte (8 bits)

W Word (16 bits)

D Double Word (32 bits)

Table 4-15. Supported Size Prefixes

4. Programming Reference

 120

Examples:

Example Description

%QX7.5 Output bit 7.5

%IW215 Input word 215

%QB7 Output byte 7

%MD48 Double word in memory position 48 in the memory location.

ivar AT %IW0 : WORD; Example of a variable declaration including an address assignment.

Table 4-16. Addressing Examples

For assigning a valid address within an application, first of all you must know the appropriate

position within the process image, that is the memory area to be used: Input (I), Output (Q) or

Memory (M) area. Further on specify the desired size: bit, byte, word, dword (see above: X, B, W,

D).

A decisive role plays the current device configuration and settings (hardware structure, device

description, I/O settings). Especially consider the differences in address interpretation between

devices using "byte addressing mode" or those using word oriented IEC addressing mode.

So depending on the size and addressing mode different memory cells might be addressed by the

same address definition.

See the table below for a comparison of byte addressing and word oriented IEC addressing for bits,

bytes, words and dwords. After all it visualizes the overlapping memory areas in case of byte
addressing mode.

Concerning the notation regard that for bit addresses the IEC addressing mode is always word

oriented, that means that the place before the dot corresponds to the number of the word, the place
behind names the number of the bit.

Obs.: n = number of the byte.

DWords/Words Bytes X (bits)

Byte addressing
Word oriented IEC

addressing

Byte addressing

Word oriented IEC

addressing

D0 W0 D1 W0 B0 X0.7 ... X0.0 X0.7 ... X0.0

D1 W1 B1 X1.7 ... X1.0 X10.15 ... X0.8

 W2 W1 B2 ... X1.7 ... X1.0

 W3 B3 X1.15 ... X1.8

 W4 D1 W2 B4

 ... B5

 W3 B6

 B7

 D2 B8

D(n-3) D(n/4) ...

 W(n-1) W(n/2)

 Bn Xn.7 ... Xn.0 X(n/2).15 ... X(n/2).8

Table 4-17. Comparison of Byte and Word Oriented Addressing for the Address Sizes D,W, B and X

Overlap of memory ranges in case of byte addressing mode, example:

D0 contains B0 - B3, W0 contains B0 and B1, W1 contains B1 and B2, W2 contains B2 and B3. In
order to get around the overlap W1, D1, D2, D3 must not be used for addressing.

4. Programming Reference

 121

NOTES:
- Boolean values will be allocated bytewise, if no explicit single-bit address is specified. Example: A
change in the value of varbool1 AT %QW0 affects the range from QX0.0 to QX0.7.
- Online Change might change the contents on addresses. Please notice this when using pointers on
addresses.

Functions

In ST a function call can also appear as an operand.

Example:

Result := Fct(7) + 3;

TIME()-Function

This function returns the time (based on milliseconds) which has been passed since the system was
started.

The data type is TIME.

Example in IL:

Example in ST:

time:=TIME();

5. Programming Languages Editors

 122

5. Programming Languages Editors

CFC Editor

The CFC Editor is available for programming objects in the programming language Continuous

Function Chart (CFC), which is an extension to the IEC 61131-3 programming languages. You

choose the language when adding a new POU object via the Add Object command in your project.

The CFC Editor is a graphical editor.

The editor will be available in the lower part of the window which opens when opening a CFC POU

object and which also includes the Declaration Editor in its upper part.

Figure 5-1. CFC Editor

The CFC editor in contrast to the network editors allows free positioning of the elements, which for

example allows direct insertion of feedback paths. The sequence of processing is determined by a list
which contains all currently inserted elements and can be modified.

The following elements are available in a Toolbox for inserting: box (operators, functions, function

blocks and programs), input, output, comment, label, jump, composer, selector.

The input and output lines of the elements can be connected by dragging a connection with the
mouse. The course of the connecting line will be created automatically and noticing the shortest

possible way. The connecting lines are automatically adjusted as soon as the elements are moved.

See also: Insert and Organize Elements.

You may change the dimension of the editor window by zooming: Use the button in the lower

right corner of the window and choose between the listed zoom factors. Alternatively you may select

the entry to open a dialog where you can enter any arbitrary factor by typing.

The commands for working in the CFC editor can be called from the context menu or from the CFC

menu which is available as soon as the CFC editor is active.

5. Programming Languages Editors

 123

Continuous Function Chart Language - CFC

The Continuous Function Chart in extension to the IEC 61131-3 standard is a graphical programming

language basing on the Function Block Diagram language. However in contrast to that no networks
are used but free positioning of graphic elements, which for example allows feedback loops.

For creating CFC programming objects in MasterTool IEC XE see: CFC Editor.

Figure 5-2. Example of a CFC Network

Cursor Positions in CFC

A possible cursor position in a CFC program is indicated by default by a grey shadow when moving
with the cursor over the elements.

As soon as you click on one of these shadowed areas, still before you are leaving the mouse-button,

the area will change color to red. As soon as you leave the pressed mouse-button, this will become
the current cursor position, the respective element or text being selected and displayed red-colored.

There are three categories of cursor positions. See, on Figure 5-3, Figure 5-4 and Figure 5-5, the

possible positions indicated by a grey shaded area as shown in the following pictures:

 If the cursor is positioned on a text, this will be displayed blue-shaded and can be edited. The
button is available for opening the Input Assistant. Primarily after having inserted an element

“???” is displayed and must be replaced by a valid identifier

Figure 5-3. Possible Cursor Positions and Two Examples of Selected Texts

 If the cursor is positioned on the body of an element (box, input, output, jump, label, return,

comment), this will be displayed red-colored and can be moved by moving the mouse

Figure 5-4. Possible Cursor Positions and Example of a Selected Body

 If the cursor is positioned on an input or output connection of an element, this will get displayed

red-colored and can be negated or set/reset

5. Programming Languages Editors

 124

Figure 5-5. Possible Cursor Positions and Examples of selected Output and Input Positions

CFC Elements / Toolbox

The graphical elements available for programming in the CFC editor window are provided by a

toolbox. The toolbox can be opened in a view window by command Toolbox which by default is in

the View menu.

Figure 5-6. CFC Toolbox, Default

The desired element can be selected in the Toolbox and inserted in the editor window via drag&drop.

Besides the programming elements there is an entry , by default at the top of the toolbox
list. As long as this entry is selected, the cursor has the shape of an arrow and you can select elements

in the editor window for positioning and editing them.

The elements:

Symbol Pin Representation Meaning

 Input

The text offered by "???" can be selected and
replaced by a variable or constant. The input

assistance serves to select a valid identifier.

 Output

The text offered by "???" can be selected and

replaced by a variable or constant. The input
assistance serves to select a valid identifier.

 Box

A box can be used to represent operators,

functions, function blocks and programs. The text
offered "???" can be selected and replaced by an
operator, function, function block or program name.

The input assistance serves to select one of the
available objects. In case a function block is
inserted, another "???" will be displayed above the

box and have to be replaced by the name of the
function block instance. If an existing box is

5. Programming Languages Editors

 125

replaced by another one (by modifying the entered

name) and the new one has a different minimum or
maximum number of input or output pins, the pins
will be adapted correspondingly. If pins are to be

removed, the lowest one will be removed first.

 Jump

The jump element is used to indicate at which

position the execution of the program should
continue. This position is defined by a label (see

below). So replace the text offered by "???" by the
label name.

 Label

A label marks the position to which the program
can jump (see above Jump).

 Return

In Online mode a RETURN element is

automatically inserted in the first column and after
the last element in the editor. In stepping it is
automatically jumped to before execution leaves

the POU.

 Composer

A composer is used to handle an input of a box

which is of type of a structure. The composer will
display the structure components and thus make

them accessible in the CFC for the programmer.
For this purpose name the composer like the
concerned structure (by replacing "???" by the

name) and connect it to the box instead of using
an "input" element.

 Selector

A selector in contrast to the composer is used to
handle an output of a box which is of type of a

structure. The selector will display the structure
components and thus make them accessible in the
CFC for the programmer. For this purpose name

the selector like the concerned structure (by
replacing "???" by the name) and connect it to the
box instead of using an "output" element.

 Comment

Use this element to add any comments to the
chart. Select the placeholder text and replace it

with any desired text. You obtain a new line within
the comment with <Ctrl> + <Enter>.

 Input Pin

Depending on the box type an additional input
might be added. For this purpose select the box

element in the CFC network and draw the Input Pin
element on the box.

 Output Pin

Depending on the box type an additional output

might be added. For this purpose select the box
element in the CFC network and draw the Output
Pin element on the box.

Table 5-1. Elements in the Editor Window

Example of the Composer element:

A CFC program cfc_prog handles an instance of function block fubblo1, which has an input variable

struvar of type of a structure. By using the Composer element the structure components can be
accessed:

Structure stru1 definition:

TYPE stru1 :

STRUCT

 ivar:INT;

 strvar:STRING:='hallo';

END_STRUCT

END_TYPE

5. Programming Languages Editors

 126

Function block fublo1, declaration AND implementation:

FUNCTION_BLOCK fublo1

VAR_INPUT

struvar:STRU1;

END_VAR

VAR_OUTPUT

fbout_i:INT;

 fbout_str:STRING;

END_VAR

VAR

 fbvar:STRING:='world';

END_VAR

fbout_i:=struvar.ivar+2;

fbout_str:=CONCAT (struvar.strvar,fbvar);

Programa cfc_prog, declaration and implementation:

PROGRAM cfc_prog

VAR

intvar: INT;

stringvar: STRING;

fbinst: fublo1;

erg1: INT;

erg2: STRING;

END_VAR

Figure 5-7. Composer Example

A CFC program cfc_prog handles an instance of function block fubblo2, which has an output

variable fbout of type of a structure stru1. By using the Selector element the structure components

can be accessed.

Structure stru1 definition:

TYPE stru1 :

STRUCT

ivar:INT;

strvar:STRING:='hallo';

END_STRUCT

END_TYPE

Function block fublo1, declaration and implementation:

FUNCTION_BLOCK fublo2

VAR_INPUT CONSTANT

fbin1:INT;

fbin2:DWORD:=24354333;

fbin3:STRING:='hallo';

END_VAR

VAR_INPUT

fbin : INT;

END_VAR

VAR_OUTPUT

fbout : stru1;

fbout2:DWORD;

5. Programming Languages Editors

 127

END_VAR

VAR

fbvar:INT;

fbvar2:STRING;

END_VAR

Program cfc_prog, declaration and implementation:

VAR

intvar: INT;

stringvar: STRING;

fbinst: fublo1;

erg1: INT;

erg2: STRING;

fbinst2: fublo2;

END_VAR

Figure 5-8. Selector Example

Insert and Organize Elements

The elements available for programming in the CFC Editor are provided in a Toolbox which by
default is available in a window as soon as the CFC editor is opened.

The CFC Editor Options define general settings for the working within the editor.

Inserting

To insert an element select it in the Toolbox by a mouse-click, keep the mouse-button pressed and

draw the element to the desired position in the editor window. During drawing the cursor will be

displayed as an arrow plus an rectangle and a plus-sign. When you leave the mouse-button the

element will be inserted.

Selecting

To select an inserted element for further actions like editing or rearranging notice the possible cursor

positions for element bodies, in- and outputs and text By a mouse-click on a elements body the
element gets selected and will be displayed by default red-shaded now. By additionally keeping

pressed the <SHIFT> key you can click on and thereby select further elements. You also can press the

left mouse-button and draw a dotted rectangle around all elements which should be selected. As soon

as you leave the button the selection will be indicated. By command Select all, which by default is
available in the context menu, all elements are selected at once.

By using the arrow keys the selection mark can be shifted to the next possible cursor position. The

sequence depends on the execution order or the elements, which is indicated by element numbers, see
below.

When an input pin is selected and <CTRL>+<LEFT ARROW> are pressed, the corresponding output will

be selected. When an output pin is selected and <CTRL>+<LEFT ARROW> are pressed, the
corresponding output(s) will be selected.

5. Programming Languages Editors

 128

Replacing Boxes

To replace an existing box element, replace the currently inserted identifier by that of the desired new

element. Notice that the number of input and output pins will be adapted if necessary due to the
definition of the POUs and thus some existing assignments might be removed.

Moving

To move an element, select the element by a mouse-click on the element body (see possible cursor
positions) and drag it, while keeping the mouse-button pressed, to the desired position. Then leave

the mouse-button to place the element. You also can use the Cut and Paste commands for this

purpose.

Connecting

The connections between the inputs and outputs of elements can be drawn with the mouse. The

shortest possible connection will be created taking into account the other elements and connections.

If the course of connection lines is painted light-grey-colored, this might indicate that elements are
positioned covering each other.

Copying

To copy an element, select it and use the Copy and Paste commands.

Editing

After inserting an element, by default the text part is represented by “???”. To replace this by the

desired text (POU name, label name, instance name, comment etc.) select the text by a mouse-click

to get an edit field. Also button will be available then to open the Input Assistant.

Deleting

A selected element can be deleted by command Delete, which is available in the context menu, or by

the .

Execution Order, Element Numbers

The sequence in which the elements in a CFC network are executed in online mode is indicated by

numbers in the upper right corner of the box, output, jump, return and label elements. The processing

starts at the element with the lowest number, which is "0". The execution order can be modified by
commands which are by default available in submenu Execution Order in the CFC menu.

When adding an element, the number will automatically be given according to the topological

sequence (from left to right and from above to below). The new element receives the number of its
topological successor if the sequence has already been changed, and all higher numbers are increased

by one.

Notice that the number of an element remains constant when it is moved.

Consider that the sequence influences the result and must be changed in certain cases.

Figure 5-9. Example of Element Numbers

5. Programming Languages Editors

 129

Changing Size of the Working Sheet

In order to get more space around an existing CFC chart in the editor window, the working area

(working sheet) size can be changed. This might be done by selecting and dragging all elements with
the mouse or by the Cut and Paste commands (see above, Moving).

Alternatively a special dimensions settings dialog can be used, which might save time in the case of

big charts. See Edit Working Sheet in the MasterTool IEC XE User Manual– MU299609 for a
description.

CFC Editor in Online Mode

In online mode the CFC editor provides views for monitoring and for writing and forcing the

variables and expressions on the controller. Debug functionality (breakpoints, stepping etc.) is
available.

For information on how to open objects in online mode see User Interface in Online Mode in the

MasterTool IEC XE User Manual– MU299609.

Notice that the editor window of an CFC object also includes the Declaration Editor in the upper

part. For information on the declaration editor in online mode see Declaration Editor in Online

Mode in the MasterTool IEC XE User Manual– MU299609.

Monitoring

The actual values are displayed in small monitoring windows behind each variable (inline

monitoring).

Figure 5-10.Online view of a Program Object (MAINPRG)

Notice that for the online view of a function block POU: In the implementation part no values will be

viewed in the monitoring windows but “<Value of the expression>” and the inline monitoring fields

in the implementation part will show three question marks each.

Breakpoint Positions in CFC Editor

Basically the breakpoint positions are those positions in a POU at which values of variables can

change or at which the program flow branches out resp. another POU is called Figure 5-11.

5. Programming Languages Editors

 130

Figure 5-11. Breakpoint Positions in CFC Editor

NOTE: Notice for breakpoints in methods: A breakpoint will be set automatically in all methods
which might be called. If a method is called via a pointer on a function block, breakpoints will be set
in the method of the function block and in all derivative function blocks which are subscribing the
method.

SFC Editor

The SFC editor is available for programming objects in the IEC 61131-3 programming language
Sequential Function Chart (SFC). The language is to be chosen when adding a new POU object to the

project via the Add Object command. The SFC editor is a graphical editor.

General settings concerning behavior and display are done in the SFC Editor Options dialog.

The SFC editor is available in the lower part of the window which opens when you edit a SFC POU
object. In its upper part this window contains the Declaration Editor.

Figure 5-12. SFC Editor

5. Programming Languages Editors

 131

The elements used in a SFC diagram by default are available in the SFC menu, which by default is

available as soon as the SFC editor is active. They are to be arranged in a sequence/parallel

sequences of steps which are connected by transitions. See also: Working in SFC Editor.

The properties of steps can be edited in a separate Properties box. Inter alia there the minimum and

maximum time of activity can be defined for each step.

Implicit variables can be accessed for controlling the processing of a SFC (for example step status,
timeout analysis, reset etc.).

The commands for working in the SFC Editor can be called from the context menu or from the SFC

menu which by default is available as soon as the SFC Editor is active.

In the SFC editor:

 Editing is made more comfortable by the fact that each particular element can be selected and

arranged individually. During editing the syntax of the SFC not necessarily must be matched.

syntax errors will not be checked until a Generate Code command

 There is only one step type, combining the two types (IEC steps and non-IEC steps), which are

used in previous versions. Actions always must be provided as POUs. The actions always are
assigned via the step element properties

 Macros can be used for structuring purposes

SFC - Sequential Function Chart

The Sequential Function Chart (SFC) is a graphically oriented language which allows to describe the
chronological order of particular actions within a program. These actions are available as separate

programming objects, written in any available programming language. In a SFC they get assigned to

step elements and the sequence of processing is controlled by transition elements. For a detailed

description on how the steps will be processed in online mode see Sequence of Processing in SFC.

Figure 5-13. Example for a Sequence of Steps in a SFC Module

Cursor Positions in SFC

A possible cursor position in a SFC diagram in the SFC Editor is indicated per default by a grey

shadow when moving with the cursor over the elements.

There are two categories of cursor positions: Texts and element bodies. See the possible positions

indicated by a grey shaded area as shown in the following pictures:

5. Programming Languages Editors

 132

Texts

Figure 5-14. Possible Cursor Positions, Texts

When you click on a text cursor position, the string will get editable:

Figure 5-15. Select Action Name for Editing

Element Bodies

Figure 5-16. Possible Cursor Positions, Element Bodies

When you click on a shadowed area, the element will get selected. It gets a dotted frame and is
displayed red-shaded (for multiple selection see Working in SFC Editor).

Figure 5-17. Selected Step Element

5. Programming Languages Editors

 133

Working in SFC Editor

By default a new SFC POU contains an init step and a subsequent transition. For how to add further

elements, how to arrange and edit the elements see the following information:

For possible cursor positions, see the above item.

Navigating: Jumping to the next / previous element in the chart is possible by using the arrow keys.

Insert Elements

The particular SFC elements can be inserted via the respective commands which by default are

available in the SFC menu. See Cursor Positions in SFC for details. A double-click on an already

inserted step, transition or action element, which does not yet reference a project object, will open a

dialog for assigning one.

Select Elements

An element and a text field might be selected by a mouse-click on a possible cursor position. The

selection might also always be given to an adjacent element by using the arrow keys. The element
will change color to red. For examples see Cursor Positions in SFC.

Steps and transitions can be selected and thus also moved (cut, copy, paste) or deleted separately.

Multiple selection is possible by the following:

 Keep the <SHIFT> key pressed and subsequently click on the particular elements to be selected

 Press the left mouse-key and draw a rectangle (dotted line) around the elements to be selected

 Use command Select All (Edit menu)

Editor Texts

By a mouse-click on a text-cursor-position at once the edit field opens, where you can edit the text. If

a text area has been selected via the arrow keys, the edit field must be opened explicitly by using the

<SPACE> bar.

Edit Associated Actions

A double click on an step (entry, active or exit) or transition action association opens the associated

action in the corresponding editor. For example perform a double click on the transition element or
on the triangle indicating an exit action in a step element.

Cut, Copy, Paste Elements

Select the element(s) and use command Cut, Copy and Paste (Edit menu) or the corresponding keys.

Notice the following behavior:

 When you paste one or several cut or copied element(s), the content of the clipboard will be

inserted before the currently selected position. If nothing is currently selected, the element(s) will

be appended at the end of the currently loaded chart

 If you paste a branch while the currently selected element is also a branch, the pasted branch

elements will be inserted left to the existing ones

 If you paste an action (list) at a currently selected step, the actions will be added at the beginning

of the action list of the step resp. an action list for the step will be created

 Incompatible elements when cutting/copying: If an associated action (list) and additionally an

element, which is not the step to which the action (list) belongs, are selected, a message box will

appear: “The current selection contains incompatible elements. No data will be filed to the
clipboard”. The selection will not be stored and you cannot paste or copy it somewhere else

 Incompatible elements when pasting: If you try to paste an action (list) while the currently

selected element is not a step or another association, an error box will appear: “The current

clipboard content cannot be pasted at the current selection”. If you try to paste an element like a

5. Programming Languages Editors

 134

step, branch or transition when currently an associated action (list) is selected the same message

box will appear

Delete Elements

Select the element(s) and use command Delete or the key. Notice the following:

 Deleting a step also deletes the associated action list

 Deleting the init step automatically sets the following step to be the initial one, that is option

Initial step will be activated in the properties of this step

 Deleting the horizontal line preceding a branched area will delete all branches

 Deleting all particular elements of a branch will delete the branch

SFC Element Properties

The properties of a SFC element can be viewed and edited in the Element properties window. This

window can be opened via command Element Properties (View menu).

It depends on the currently selected element which properties are displayed. The properties are

grouped and the particular group sections can be opened or closed by using the plus/minus signs.

Notice that in the View tab of the SFC Editor options you can configure whether the particular types

of properties should be displayed next to an element in the SFC chart.

Common:

Property Description

Name Element name, by default <element><running number> , for example step name

Step0, Step1, branch name branch0 etc.

Comment Element comment, text string, for example "Reset the counter". Line breaks can be

inserted via <Ctrl>+<Enter>.

Symbol For each SFC element implicitly a flag is created, named like the element.

Here you can specify whether this flag variable should be exported to the symbol
configuration and how the symbol then should be accessible in the PLC.

Perform a double-click on the value field, resp. select the value field and use the
space-key in order to open a selection list from which you can choose one of the
following access options.

None: The symbol will be exported to the symbol configuration, but it won't not be
accessible in the PLC:

Read: The symbol will be exported to the symbol configuration and it will be readable
in the PLC.

Write: The symbol will be exported to the symbol configuration and it will be written in
the PLC.

Read/Write: Combination of Read and Write.

By default nothing is entered here, which means, that the symbol not at all is

exported to the symbol configuration

Table 5-2. Common Properties Description

Specific:

Property Description

Initial Step This option always is activated in the properties of the current initial step

(init step). By default it is activated for the first step in a SFC and
deactivated for other steps. Notice that if you activate this option for
another step, you must deactivate it in the previous init step in order to

avoid a compiler error.

Times Notice the possibility to detect timeouts in steps by the SFCError flag.

Minimal active Minimum length of time the processing of this step should take; permissible

values: time according to IEC-syntax (for example t#8s) or TIME variable;
default: t#0s.

Maximal active Maximum length of time the processing of this step should take;

permissible values: time according to IEC-syntax (for example t#8s) or
TIME variable; default: t#0s.

5. Programming Languages Editors

 135

Actions Define here the actions to be performed when the step is active. Notice the

description of the sequence of processing for details.

Step entry This action will be executed after the step has got active.

Active step This action will be executed when the step is active and possible entry
actions have been already processed.

Step exit This action will be executed in the subsequent cycle after a step has been

deactivated.

Table 5-3. Specific Properties Description

NOTE: Notice the possibility of getting information on step/action status and timeouts via the
appropriate implicit variables and SFC flags.

SFC Elements / Toolbox

The graphic elements usable for programming in the SFC editor window currently can be inserted by

using the insert commands (SFC menu).

See also: Working in SFC Editor.

The following elements are available and described in the following:

 Step

 Transition

 Action

 Branch (Alternative)

 Branch (Parallel)

 Jump

 Macro

Step-Transition

Symbol:

A step is represented by a box containing the step name and being connected to the preceding and

subsequent transitions by a line.

The step name can be edited inline.

The box frame of the init step is double-lined.

Notice that each step - by command Init step or by activating the respective step property - can be

transformed to an init step , that is to that step, which will be executed first when the IL-POU is

called.

Each step is defined by the step properties.

The actions to be performed when the step is active (processed) are to be associated (see below,

Action).

Steps and transitions are basically inserted in combination via command Insert step-transition (after).

NOTES:
- There is only one type of steps (the IEC conforming steps).
- Step names must be unique in the scope of the parent POU. Notice this especially when using
actions programmed in SFC.

5. Programming Languages Editors

 136

Figure 5-18. Step and Subsequent Transition

Figure 5-19. Initial Step and Subsequent Transition

Transition

A transition is represented by a small rectangle box connected to the preceding and subsequent steps
by a line. It provides the condition on which the following step will get active (as soon as the

condition is TRUE).

The transition name and the transition condition is displayed right to the box.

By default automatically a transition “trans<n>” is inserted, whereby n is a running number.

This default name can be selected and modified:

 A valid name is either the name of a transition object () available in the POUs tree (this allows
multiple use of transitions; see for example “t1” in the left column)

 A valid conditional expression

NOTE: Regard that transitions which consist of a transition or a property object are indicated by a
small triangle in the upper right corner of the rectangle.

Figure 5-20. Transition in POUs Tree

5. Programming Languages Editors

 137

Figure 5-21. Transition Examples

Figure 5-22. Transition or Property Object Indicated by a Triangle

A transition condition must have the value TRUE or FALSE. Thus it can consist of either a Boolean

variable, a Boolean address, a Boolean constant, or a series of instructions having a Boolean result.

But a transition may not contain programs, function blocks or assignments.

A transition condition is handled like a method call. It be entered according to the syntax:

<Transition name>:=<Transition condition>; (* for example "trans1:= a=100"

*)

Or:

<Transition condition>; (* for example "a=100" *)

See example above (t1).

In online mode the subsequent step can only get active if the preceding transition has become TRUE.

Action

Symbol:

An action can contain a series of instructions written in one of the valid programming languages. It is

assigned to a step and in online mode it will be processed according to the defined sequence of
processing.

Each action to be used in SFC steps must be available as a valid POU within the SFC POU and the

project ().

5. Programming Languages Editors

 138

The Add Object command is available for adding an action POU below a SFC POU.

Figure 5-23. Actions in POUs Tree

NOTE: Step names must be unique in the scope of the parent POU. An action may not contain a step
having the same name like the step to which it is assigned to.

Figure 5-24. Example of an Action Written in ST

There are the following types of actions:

 IEC Actions

 IEC-extending step actions

IEC Conforming Step Action (IEC Action)

This is an action according to standard IEC1131-3 which will be processed according to its qualifier

when the step has got active and a second time when it has got deactivated. In case of assigning

multiple actions to a step (action list) the actions will be executed from up to down.

Different qualifiers can be used for IEC step actions in contrast to a normal step action.

A further difference to the normal step actions is that each IEC step action is provided with a control

flag, which allows to make sure that - even if the action is called also by another step - the action will

get executed always only once at a time. This is not guaranteed with the normal step actions.

An IEC step action is represented by a bipartite box, connected to the right of a step via a connection

line. In the left part it shows the action qualifier, in the right part the action name. Both can be edited

inline.

IEC step actions get associated to a step via the Insert action association (after) command. One or

multiple actions can be associated to a step. The position of the new action depends on the current

cursor position and the command. The actions must be available in the project and be inserted with a

unique action name (for example MainPrg.a1).

Figure 5-25. IEC Conforming Step Action List Associated to a Step

Each action box in the first column shows the qualifier and in the second the action name.

5. Programming Languages Editors

 139

IEC Extending Step Actions

These are actions extending the IEC standard: The actions must be available as objects below the

SFC object. The action names must be unique.

Step Entry Action

This type of step action will be processed as soon as the step has become active and before the step

active action.

The action is associated to a step via an entry in the Step Entry field of the step properties. It is

represented by an “E” in the lower left corner of the respective step box.

Step Active Action

This type of step action will be processed when the step has become active and after a possible step
entry action of this step has been processed. However in contrast to an IEC step action it is not

executed once more when it gets deactivated and it cannot get assigned qualifiers.

The action is associated to a step via an entry in the Step active field of the step properties. It is
represented by a small triangle in the upper right corner of the respective step box.

Step Exit Action

An exit action will be executed once when the step has got deactivated. Notice however that this

execution will not be done in the same, but at the beginning of the subsequent cycle.

The action is associated to a step via an entry in the Step exit field of the step properties. It is

represented by an X in the lower right corner of the respective step box.

Figure 5-26. IEC Extending Step Actions

The Step active, Step Entry and Step Exit actions are defined in the step properties.

5. Programming Languages Editors

 140

Figure 5-27. Step Active Action

Branches

A sequential function chart can diverge, that is the processing line can be branched into two or

several further lines (branches). Parallel branches will be processed parallel (both at a time), in case

of alternative branches only one will be processed depending on the preceding transition condition.

Each branching within a chart is preceded by a horizontal double (parallel) or simple (alternative)
line and also terminated by such a line or by a jump.

Parallel Branch

Symbol:

A parallel branch must begin and end with a step. Parallel branches can contain alternative branches
or other parallel branches.

 The horizontal lines before and after the branched area are double-lines.

Processing in online mode: If the preceding transition (t2 in Figure 5-28) is TRUE, the first steps of

all parallel branches will become active. The particular branches will be processed parallel to one
another before the subsequent transition (t3 in Figure 5-28) will be noticed.

A parallel branch is inserted via command Insert branch (right) when a step is currently selected.

Notice that parallel and alternative branches can be transformed to each other by the commands
Parallel and Alternative. This might be useful during programming.

Automatically a branch label is added at the horizontal line preceding the branching which is named

Branch<n>, whereby n is a running number starting with 0 (zero). This label can be specified when
defining a jump target.

Figure 5-28. Parallel Branch

5. Programming Languages Editors

 141

Alternative Branch

Symbol:

An alternative branch must begin and end with a transition. Alternative branches can contain parallel

branches and other alternative branches.

The horizontal lines before and after the branched area are simple lines.

If the step which precedes the alternative beginning line is active, then the first transition of each

alternative branch will be evaluated from left to right. The first transition from the left whose

transition condition has value TRUE, will be opened and the following steps will be activated.

Alternative branches are inserted via command Insert branch (right) when a transition is currently

selected.

The horizontal lines before and after the branched area are simple lines.

Notice that parallel and alternative branches can be transformed to each other by the commands

Parallel and Alternative. This might be useful during programming.

Figure 5-29. Alternative Branch

Jump

Symbol:

A jump is represented by a vertical connection line plus a horizontal arrow and the name of the jump

target.

A jump defines the next step to be processed as soon as the preceding transition is TRUE. Jumps
might be needed because the processing lines must not cross or lead upward.

Besides the default jump at the end of the chart a jump may only be used at the end of a branch. It

gets inserted via command Insert jump (after) when the last transition of the branch is selected.

The target of the jump is specified by the associated text string which can be edited inline. It can be a

step name or the label of a parallel branch.

5. Programming Languages Editors

 142

Figure 5-30. Jump

Macro

Symbol:

Figure 5-31. Main SFC Editor View

Figure 5-32. Macro Editor View for Macro1

A macro is represented by a bold-framed box containing the macro name.

It includes a part of the SFC chart, which thus is not directly visible in the main editor view.

The process flow is not influenced by using macros, it is just a way to hide some parts of the

program, for example in order to simplify the display.

A macro box is inserted by command Insert macro (after). The macro name can be edited inline.

5. Programming Languages Editors

 143

To open the macro editor, perform a double-click on the macro box or use command Zoom in to

macro. You can edit here just as in the main editor view and enter the desired section of the SFC

chart. To get out use Zoom out of macro.

The title line of the macro editor always shows the path of the macro within the current SFC.

Figure 5-33. Title Line of the Macro Editor

Qualifier

In order to configure in which way the actions should be associated to the IEC steps, some qualifiers

are available, which are to be inserted in the qualifier field of an action element.

These qualifiers are handled by the SFCActionControl function block of the IecSfc.library, which
automatically is included in a project by the features of SFC.

The available qualifiers:

Qualifier Name Description

N Non-stored The action is active as long as the step is active.

R Reset The action gets deactivated.

S Set The action will be started when the step becomes
active and will be continued after the step is

deactivated, until the action gets reset.

L Time Limited The action will be started when the step becomes

active and it will continue until the step goes inactive
or a set time has passed.

D Time Delayed A delay timer will be started when the step becomes

active. If the step is still active after the time delay,
the action will start and continue until it gets
deactivated.

P Pulse The action will be started when the step becomes

active/deactive and will be executed once.

SD Pulse stored and time

delayed

The action will be started after the set time delay and

it will continue until it gets reset.

DS Delayed and stored If the step is still active after the specified time delay,
the action will start and it will continue until it gets

reset.

SL Stored and time limited The action will be started when the step becomes

active and it will continue for the specified time or
until a reset.

Table 5-4. Qualifiers

The qualifiers L, D, SD, DS and SL need a time value in the TIME constant format.

NOTE: When an IEC action has been deactivated it will be executed once more. This means that
each action at least is executed twice.

Implicit Variables - SFC Flags

Each SFC step and IEC action provides implicitly generated variables for watching the status of steps

and IEC actions during runtime. Also variables can be defined for watching and controlling the
execution of a SFC (timeouts, reset, tip mode). These variables also might be generated implicitly by

the SFC object.

5. Programming Languages Editors

 144

Basically for each step and each IEC action an implicit variable is generated. A structure instance,

named like the element, for example step1 for a step with step name step1. Notice the possibility, to

define in the element properties, whether for this flag a symbol definition should be exported to the
symbol configuration and how this symbol should be accessible in the PLC.

The data types for those implicit variables are defined in library IecSFC.library. This library will

automatically be included in the project as soon as an SFC object is added.

Step and Action Status and Step Time

Basically for each step and each IEC-action an implicit structure variable of type SFCStepType and

SFCActionType is created. The structure components (flags) describe the status of a step/action or

the currently processed time of an active step.

The syntax for the implicitly done variable declaration is:

<Step name>: SFCStepType;

E:

 _<Action name>: SFCActionType;

NOTE: Implicit variables for actions always are preceded by an underscore.

The following Boolean flags for step or action states are available:

 <step name>.x: shows the current activation status

 <step name>._x: shows the activation status for the next cycle

If <step name>.x = TRUE, the step will be executed in the current cycle.

If <step name>._x = TRUE and <step name>.x = FALSE, the step will be executed in the following
cycle, that is <step name>._x gets copied to <step name>.x at the beginning of a cycle.

The following Boolean flags for step or action states are available:

 _<action name>.x is TRUE, if the action is executed

 _< action name >._x is TRUE, if the action is active

Symbol Generation

In the element properties of a step or an action you can define, whether for the step or action name
flag a symbol definition should be added to a possibly created and downloaded symbol application.

For this purpose make an entry for the desired access right in column Symbol of the element

properties view.

NOTE: The flags described above might be used to force a certain status value for a step, that is for
setting a step active, but be aware that this will effect uncontrolled states within the SFC.

Time Via TIME Variables

The flag “t” gives the current time span which has passed since the step had got active. This is

onlyfor steps, no matter whether there is a minimum time configured in the step attributes or not (see

also below: SFCError).

For steps:

<stepname>.t (<stepname>._t not usable for external purposes)

For actions: the implicit time variables are not used.

5. Programming Languages Editors

 145

Control of SFC Executions (Timeouts, Reset, Tip Mode)

Some implicitly available variables, also named SFC flags, (see table below) can be used to control

the operation of an SFC, for example for indicating time overflows or enabling tip mode for
switching transitions.

In order to be able to access these flags and to get them work, they must be declared and activated.

This is to be done in the SFC Settings dialog which is a sub dialog of the object Properties dialog.
Manual declaration, as it was needed in previous versions, is only necessary to enable write access

from another POU (see below, Accessing Flags). In this case however regard the following: If you

declare the flag globally, you must deactivate the Declare option in the SFC Settings dialog in order

not to get a implicitly declared local flag, which then would be used instead of the global one. Keep
in mind, that the SFC Settings for a SFC POU initially are determined by the definitions currently set

in the SFC Options dialog.

Notice that a declaration of a flag variable solely done via the SFC Settings dialog will only be
visible in the online view of the SFC POU.

There is a SFC POU named sfc1 containing a step s2 which has time limits defined in its step

attributes. See the attributes displayed below in Figure 5-34.

If for any reason the step s2 stays active for a longer time than allowed by its time properties (time
overflow), a SFC flag will be set which might be read by the application.

In order to allow this access, declare the flag in the SFC Settings dialog. For this purpose select sfc1

in the Devices/POUs window and choose command Properties from the context menu. Open sub
dialog SFC Settings and there, on tab Flags, set a checkmark each in column Declare and Use for

flag SFCError. Solely declaring would make the variable visible in the online view of the sfc1

declaration part, but it would be without function.

Figure 5-34. SFC Settings

Now you can read SFCError within the SFC, for example in an action, via SFCError, or from another

POU via sfc1.SFCError.

5. Programming Languages Editors

 146

Figure 5-35. Accessing SFCError

SFCError will get TRUE as soon as a timeout within sfc2 occurs.

Figure 5-36. Online view of SFC sfc1

The following implicit variables (flags) can be used. For this purpose they must be declared and
activated in the SFC Settings:

5. Programming Languages Editors

 147

Variable Description

SFCInit: BOOL; If this variable gets TRUE, the sequential function chart will be set back

to the Init step. All steps and actions and other SFC flags will be reset
(initialization). The Init step will remain active, but not be executed as

long as the variable is TRUE. SFCInit must be set back to FALSE in
order to get back to normal processing.

SFCReset: BOOL; This variable behaves similarly to SFCInit. Unlike the latter however,
further processing takes place after the initialization of the Init step.

Thus in this case for example a reset to FALSE of the SFCReset flag
could be done in the Init step.

SFCError: BOOL; As soon as any timeout occurs at one of the steps in the SFC, this
variable will get TRUE. Precondition: SFCEnableLimit must be TRUE.

Notice that any further timeout cannot be registered before a reset of
SFCError. SFCError must be defined, if you want to use the other time-
controlling flags (SFCErrorStep, SFCErrorPOU, SFCQuitError).

SFCEnableLimit:

BOOL;

This variable can be used for the explicit activation (TRUE) and

deactivation (FALS) of the time control in steps via SFCError. This
means, that If this variable is declared and activated (SFC Settings)
then it must be set TRUE in order to get SFCError working. Otherwise

any timeouts of the steps will not be registered. The usage might be
reasonable during start-ups or at manual operation. If the variable is
not defined, SFCError will work automatically. Of course as a

precondition SFCError must be defined!

SFCErrorStep: STRING; This variable stores the name of a step at which a timeout was

registered by SFCError. timeout. Precondition: SFCError must be
defined!

SFCErrorPOU: STRING; This variable stores the name of the SFC POU in which a timeout has
occurred. Precondition: SFCError must be defined!

SFCQuitError: BOOL; As long as this variable is TRUE, the execution of the SFC diagram is

stopped and variable SFCError will be reset. As soon as the variable
has been reset to FALSE, all current time states in the active steps will
be reset. Precondition: SFCError must be defined!

SFCPause: BOOL; As long as this variable is TRUE, the execution of the SFC diagram is

stopped.

SFCTrans: BOOL; This variable gets TRUE, as soon as a transition is actuated.

SFCCurrentStep:

STRING;

This variable stores the name of the currently active step,

independently of the time monitoring. In case of simultaneous
sequences the name of the outer right step will be registered.

SFCTip, SFCTipMode:

BOOL;

This variables allow using the inching mode within the current chart.

When this mode has been switched on by SFCTipMode=TRUE, you
can only skip to the next step by setting SFCTip=TRUE (rising edge).
As long as SFCTipMode is set to FALSE, it is possible to skip by the

transitions.

Table 5-5. Implicit Variables

A timeout has been detected in step s1 in SFC object POU by flag SFCError.

5. Programming Languages Editors

 148

Figure 5-37. Example of Some SFC Error Flags in Online Mode of the Editor

Accessing Flags

For enabling access on the flags for the control of SFC execution (timeouts, reset, tip mode), the flag

variables must be declared and activated as described above (Control of SFC execution).

Syntax for accessing:

 From an action or transition within the SFC POU: <step name>.<flag> and _<action

name>.<flag>. Examples: status:=step1._x; checkerror:=SFCerror

 From another POU:<SFC POU>.<step name>.<flag> and <SFC POU>_<action name >.<flag>.

Examples: status:=SFC_prog.step1._x; checkerror:=SFC_prog.SFCerror;

In case of write access from another POU the implicit variable additionally must be declared
explicitly as a VAR_INPUT variable of the SFC POU or globally e.g. in a GVL.

Example:

Local declaration:

PROGRAM SFC_prog

VAR_INPUT

SFCinit:BOOL;

END_VAR

Or global declaration in a GVL:

VAR_GLOBAL

SFCinit:BOOL;

END_VAR

Accessing the flag in MAINPRG:

PROGRAM MAINPRG

VAR

setinit: BOOL;

END_VAR

SFC_prog.SFCinit:=setinit; // write access in the SFCinit on SFC_prog.

Sequence of Processing in SFC

In online mode the particular action types will be processed according a defined sequence (Table

5-6).

First note the following use of terms:

5. Programming Languages Editors

 149

 Active step: A step, whose step action is being executed, is called active. In online mode active

steps are filled with blue color

 Initial step: In the first cycle after a SFC POU has been called, the initial step automatically gets

active and the associated step action is executed

 IEC actions are executed at least twice (the first time when they have got active, the second time

- in the following cycle - when they have been deactivated)

 Alternative Branches: If the step preceding the horizontal start line of alternative branches is

active, then the first transition of each particular branch will be evaluated from left to right. The

first transition from the left whose transition condition has value TRUE will be searched and the

respective branch will be executed, that is the subsequent step within this branch will get active

 Parallel Branches: If the double-line at the beginning line of parallel branches is active and the

preceding transition condition has the value TRUE, then in all parallel branches each the first

step will get active. The branches now will be processed parallel to one another. The step

subsequent to the double-line at the end of the branching will become active when all previous

steps are active and the transition condition after the double-line has the value TRUE

Processing order of elements in a sequence:

Item Description

Reset All action control flags of the IEC actions get re-set (not however the

flags of IEC actions that are called within actions!).

Step exit actions All steps are checked in the order which they assume in the sequence

chart (top to bottom and left to right) to determine whether the
requirement for execution of the step exit action is provided, and - if that

is the case - this will be executed. An exit action will be executed, if the
step is going to get deactivated, that is if its entry and step actions - if
existing - have been executed during the last cycle, and if the transition

for the following step is TRUE.

Step entry actions All steps are tested in the order which they assume in the sequence to

determine whether the requirement for execution of the step entry
action is provided and - if that is the case - this will be executed. An

entry action will be executed, if the step-preceding transition condition is
TRUE and thus the step has been activated.

Timeout check, Step
Active Actions

For all steps, the following is done in the order which they assume in
the sequence.

IEC Actions IEC actions that are used in the sequence are executed in alphabetical
order. This is done in two passes through the list of actions. In the first

pass, all the IEC actions that are deactivated in the current cycle are
executed. In the second pass, all the IEC actions that are active in the
current cycle are executed.

Transition check,

Activating next steps

Transitions are evaluated: If the step in the current cycle was active and

the following transition returns TRUE (and if applicable the minimum
active time has already elapsed), then the following step is activated.

Table 5-6. Processing Order of Elements in a Sequence

NOTES:
- It can come about that an action is carried out several times in one cycle because it is associated
with multiple sequences. For example, an SFC could have two IEC actions A and B, which are both
implemented in SFC, and which both call IEC action C; then in IEC actions A and B can both be
active in the same cycle and furthermore in both actions IEC action C can be active; then C would be
called twice). If the same IEC action is used simultaneously in different levels of an SFC, this could
lead to undesired effects due to the processing sequence described above. For this reason, an error
message is issued in this case.
- Notice the possibility of using implicit variables for controlling the status of steps and actions resp.
the execution of the chart.

SFC Editor in Online Mode

In online mode the SFC Editor provides views for monitoring and for writing and forcing the

variables and expressions on the controller. See below.

5. Programming Languages Editors

 150

 For information on how to open objects in online mode, see User Interface in Online Mode in

the MasterTool IEC XE User Manual – MU299609

 Notice that the editor window of an SFC object also includes the Declaration Editor in the upper

part. For general information on the Declaration Editor in online mode, see Declaration Editor

in Online Mode in the MasterTool IEC XE User Manual – MU299609. In case of having
declared implicit variables (SFC flags) via the SFC Settings dialog, those will be added here, but

will not be viewed in the offline mode of the Declaration Editor

 Also please notice the sequence of processing of the elements of a sequential function chart.

 See the object properties and the SFC Editor options and SFC defaults for settings concerning

compilation resp. online display of the SFC elements and their attributes

 Consider the possible use of flags for watching and controlling the processing of an SFC

Monitoring

Active steps are displayed filled blue-colored. The display of step attributes depends on the currently

set SFC editor options.

5-38. Online View of a Program Object SFC_prog

Structured Text (ST) / Extended Structured Text (ExST)

Structured Text is a textual high-level programming language, similar to PASCAL or C. The
program code is composed of expressions and instructions. In contrast to IL (Instruction List),

numerous constructions can be used for programming loops, thus allowing the development of

complex algorithms.

Example:

IF value < 7 THEN

WHILE value < 8 DO

value:=value+1;

END_WHILE;

END_IF;

5. Programming Languages Editors

 151

Extended Structured Text (ExST) is a MasterTool IEC XE-specific extension to the IEC 61131-3

standard for Structured Text (ST). Examples: Assignment as expression, Set-/Reset-Operators.

Expressions

An expression is a construction which after its evaluation returns a value. This value is used in

instructions.

Expressions are composed of operators, operands and/or assignments. An operand can be a constant,
a variable, a function call or another expression.

Examples:

Expression Definition

33 Constant

ivar Variable

fct(a,b,c) Function call

a AND b Expression

(x*y) / z Expression

real_var2 := int_var; Assignment

Table 5-7. Expressions

Valuation of Expressions

The evaluation of expression takes place by means of processing the operators according to certain

binding rules. The operator with the strongest binding is processed first, then the operator with the
next strongest binding, etc., until all operators have been processed.

Operators with equal binding strength are processed from left to right.

Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol

Put in parentheses (expression)

Function call Function name
(parameter list)

Exponentiation EXPT

Negate -

Building of complements NOT

Multiply *

Divide /

Modulo MOD

Add +

Subtract -

Compare <,>,<=,>=

Equal to
Not equal to

=
<>

Boolean AND AND

Boolean XOR XOR

Boolean OR OR

Table 5-8. ST Operators

Assignment as Expression

As extension to the IEC 61131-3 standard (ExST), MasterTool IEC XE allows assignments to be

used as an expression.

Examples:

5. Programming Languages Editors

 152

Expressions Comment

int_var1 := int_var2 :=

int_var3 + 9;

Assignment of the result of an expression to int_var2 and

int_var1

real_var1 := real_var2 :=
int_var;

Correct assignments, real_var1 and real_var2 will get the value
of int_var

int_var := real_var1 := int_var; This will lead to an error message because of type mismatch

real-int

IF b := (i = 1) THEN

i := i + 1;
END_IF

Wrong assignments: use of assignment operator to compare two

expressions.

Table 5-9. Assignments Used As Expressions

Instructions

Instructions tell what to do with the given expressions. The following instructions can be used in ST.

Instruction Type Example

Assignment A:=B; CV := CV + 1; C:=SIN(X);

Calling a function block and

use of FB output

CMD_TMR(IN := %IX5, PT := 300);

A:=CMD_TMR.Q

RETURN RETURN;

IF D:=B*B;

IF D<0.0 THEN

C:=A;

ELSIF D=0.0 THEN

C:=B;

ELSE

C:=D;
END_IF;

CASE CASE INT1 OF

um: BOOL1 := TRUE;

2: BOOL2 := TRUE;

ELSE

 BOOL1 := FALSE;

 BOOL2 := FALSE;

END_CASE;

FOR J:=101;

FOR I:=1 TO 100 BY 2 DO

IF ARR[I] = 70 THEN

J:=I;
EXIT;

END_IF;

END_FOR;

WHILE J:=1;

WHILE J<= 100 AND ARR[J] <> 70 DO

J:=J+2;
END_WHILE;

REPEAT J:=-1;

REPEAT

J:=J+2;

UNTIL J= 101 OR ARR[J] = 70

END_REPEAT;

EXIT EXIT;

CONTINUE CONTINUE;

JMP label: i:=i+1;

JMP label;

Empty instruction ;

Table 5-10. Instructions

5. Programming Languages Editors

 153

Assignment Operator

On the left side of an assignment there is an operand (variable, address) to which he value of the

expression on the right side is assigned by the assignment operator “:=”.

See also the MOVE operator which does the same.

Example:

Var1 := Var2 * 10;

After completion of this line Var1 has the tenfold value of Var2.

Extended Features

Further assignment operators, which are not part of the 61131-3 standard (ExST):

Set Operator S=: The value will be "set", that is if once set to TRUE will remain TRUE.

Example:

a S= b;

Operand “a” gets the value of “b”; if once set to TRUE it will remain true, even if “b” gets FALSE
again.

Reset Operator R=: The value will be reset, that is if once set to FALSE, it will remain FALSE.

Example:

a R= b;

Operand “a” gets set to FALSE when B = TRUE.

NOTE:
Notice the behavior in case of a multiple assignment: All Set and Reset assignments refer to the last
member of the assignment. Example: A S= b R= fun1(par1,par2).
In this case B gets the reset output value of fun1, But “a” does not get the set value of “b”, but gets
the set output value of fun1.

Notice that an assignment can be used as an expression.

Calling Function Blocks in ST

A function block (FB) is called in Structured Text according to the following syntax:

Syntax:

<name of instance>(FB input variable:=<value or address>|, <further FB

input variable:=<value or address>|... further FB input variables);

Example:

In the following example a timer function block (TON) is called with assignments for the parameters
IN and PT.

Then result variable Q is assigned to variable A. The timer FB is instantiated by “TMR:TON;”

The result variable, as in IL, is addressed according to syntax <FB instance name>.< FB variable>:

TMR(IN := %IX5, PT := 300);

A:=TMR.Q

RETURN Instruction

The RETURN instruction can be used to leave a POU, for example depending on a condition.

Syntax:

RETURN;

5. Programming Languages Editors

 154

Example:

IF b=TRUE THEN

RETURN;

END_IF;

a:=a+1;

If “b” is TRUE, instruction a:=a+1; will not be executed, the POU will be left immediately.

IF Instruction

With the IF instruction you can check a condition and, depending upon this condition, execute

instructions.

Syntax:

IF <Boolean Expression 1> THEN

<IF Instructions>

{ELSIF <Boolean expression 2> THEN

<ELSIF instructions 1>

...

ELSIF <Boolean expression 2> THEN

<ELSIF instructions n-1>

ELSE

<ELSE instructions>}

END_IF;

The part in braces ({}) is optional.

If the <Boolean_expression1> returns TRUE, then only the <IF_Instructions> are executed and none

of the other instructions.

Otherwise the Boolean expressions, beginning with <Boolean_expression 2> are evaluated one after

the other until one of the expressions returns TRUE. Then only those instructions after this Boolean

expression and before the next ELSE or ELSIF are evaluated.

If none of the Boolean expressions produce TRUE, then only the <ELSE_instructions> are evaluated.

Example:

IF temp<17 THEN

heating_on := TRUE;

ELSE

heating_on := FALSE;

END_IF;

Here the HEATING_ON variable is turned on when the temperature sinks below 17 degrees.

Otherwise it remains off (FALSE).

CASE Instruction

With the CASE instructions one can combine several conditioned instructions with the same

condition variable in one construct.

Syntax:

CASE <Var1> OF

<Value 1>:<Instruction 1>

<Value 2>:<Instruction 2>

<Value 3, Value 4, Value 5>:<Instruction 3>

<Value 6 .. Value 10>: <Instruction 4>

...

<Value n>:<Instruction n>

ELSE

<ELSE Instruction>

END_CASE;

5. Programming Languages Editors

 155

A CASE instruction is processed according to the following model:

 If the variable in <Var1> has the value <Value 1>, then the instruction < Instruction 1> will be

executed

 If <Var 1> has none of the indicated values, then the < ELSE instruction > will be executed

 If the same instruction is to be executed for several values of the variables, then one can write

these values one after the other separated by commas and thus condition the common execution

 If the same instruction is to be executed for a value range of a variable, one can write the initial

value and the end value separated by two dots. So you can condition the common condition

Example:

CASE INT1 OF

1, 5: BOOL1 := TRUE;

BOOL3 := FALSE;

2: BOOL2 := FALSE;

BOOL3 := TRUE;

10..20: BOOL1 := TRUE;

BOOL3:= TRUE;

ELSE

BOOL1 := NOT BOOL1;

BOOL2 := BOOL1 OR BOOL2;

END_CASE;

FOR Loop

With the FOR loop one can program repeated processes.

Syntax:

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <STEP SIZE>} DO

<Instructions>

END_FOR;

The part in braces ({}) is optional.

The <INSTRUCTIONS> are executed as long as the counter <INT_Var> is not greater than the

<END_VALUE>. This is checked before executing the < INSTRUCTIONS > so that the

<instructions> are never executed if <INIT_VALUE> is greater than <END_VALUE>.

When <INSTRUCTIONS> are executed, <INT_Var> is increased by <STEP SIZE>. The step size

can have any integer value. If it is missing, then it is set to 1. The loop must also end since

<INT_Var> only becomes greater.

Example:

FOR Counter:=1 TO 5 BY 1 DO

Var1:=Var1*2;

END_FOR;

Erg:=Var1;

Let us assume that the default setting for Var1 is “1”. Then it will have the value “32” after the FOR

loop.

NOTE: If <VALOR_FINAL> is equal to the limit value of counter <INT_VAR> for example if
Counter - used in the example shown above - is of type SINT and if < VALOR_FINAL > is 127,
then you will get an endless loop. So, < VALOR_FINAL > must not be equal to the limit value of
the counter.

The CONTINUE instruction can be used within a FOR loop.

5. Programming Languages Editors

 156

WHILE Loop

The WHILE loop can be used like the FOR loop with the difference that the break-off condition can

be any Boolean expression. This means you indicate a condition which, when it is fulfilled, the loop
will be executed.

Syntax:

WHILE <Boolean expression> DO

 <Instructions>

END_WHILE;

The <INSTRUCTIONS> are repeatedly executed as long as the <BOOLEAN EXPRESSION>

returns TRUE. If the <BOOLEAN EXPRESSION>is already FALSE at the first evaluation, then the

<INSTRUCTIONS> are never executed. If <BOOLEAN EXPRESSION> never assumes the value
FALSE, then the <INSTRUCTIONS> are repeated endlessly which causes a relative time delay.

NOTE: The programmer must make sure that no endless loop is caused. He does this by changing
the condition in the instruction part of the loop, for example, by counting up or down one counter.

Example:

WHILE Counter<>0 DO

 Var1 := Var1*2;

 Counter := Counter-1;

END_WHILE

The WHILE and REPEAT loops are, in a certain sense, more powerful than the FOR loop since one

doesn't need to know the number of cycles before executing the loop. In some cases one will,
therefore, only be able to work with these two loop types. If, however, the number of the loop cycles

is clear, then a FOR loop is preferable since it allows no endless loops.

The CONTINUE instruction can be used within a WHILE loop.

REPEAT Loop

The REPEAT loop is different from the WHILE loop because the break-off condition is checked

only after the loop has been executed. This means that the loop will run through at least once,

regardless of the wording of the break-off condition.

Syntax:

REPEAT

<Instructions>

UNTIL <Boolean expression>

END_REPEAT;

<INSTRUCTIONS> are carried out until the < BOOLEAN EXPRESSION > returns TRUE.

If < BOOLEAN EXPRESSION > is produced already at the first TRUE evaluation, then

<INSTRUCTIONS> are executed only once. If < BOOLEAN EXPRESSION > never assumes the

value TRUE, then the < INSTRUCTIONS > are repeated endlessly which causes a relative time

delay.

NOTE: The programmer must make sure that no endless loop is caused. He does this by changing
the condition in the instruction part of the loop, for example by counting up or down one counter.

Example:

REPEAT

Var1 := Var1*2;

Counter := Counter-1;

UNTIL

Counter=0

5. Programming Languages Editors

 157

END_REPEAT:

The CONTINUE instruction can be used within a REPEAT loop.

CONTINUE Instruction

As an extension to the IEC 61131-3 standard (ExST) the CONTINUE instruction is supported within

FOR, WHILE and REPEAT-loops.

CONTINUE makes the execution proceed with the next loop-cycle.

Example:

FOR Counter:=1 TO 5 BY 1 DO

INT1:= INT1/2;

IF INT1=0 THEN

CONTINUE; (* To avoid division by zero *)

END_IF

Var1:=Var1/INT1; (* Only executed, if INT1 is not "0" *)

END_FOR;

Erg:=Var1;

EXIT Instruction

If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the innermost loop is

ended, regardless of the break-off condition.

JMP Instruction

The JMP instruction can be used for an unconditional jump to a code line marked by a jump label.

Syntax:

<LABEL>:

JMP <LABEL>;

<LABEL> is an arbitrary, but unambiguous identifier that is placed at the beginning of a program

line. The instruction JMP has to be followed by the indication of the jump destination that has to
equal a predefined label. When arriving the JMP instruction a flyback to the program line that is

provided with the indicated label will be effected.

NOTE: The programmer has to avoid the creation of endless loops, for example by subjecting the
jump to an IF condition.

Example:

i:=0;

label1: i:=i+1;

(*Instructions*)

IF (i<10) THEN

JMP label1;

END_IF

As long as the variable “i” being initialized with 0 has a value less than 10, the conditional jump

instruction of the example above will effect a repeated flyback to the program line provided with
label label1 and therefore it will effect a repeated processing of the instructions comprised between

the label and the JMP instruction. Since these instructions include also the increment of the variable

“i”, we can be sure that the jump condition will be FALSE (at the 9th check) and program flow will
be proceeded.

This functionality may also be achieved by using a WHILE or REPEAT loop in the example.

Generally the use of jump instructions can and should be avoided, because they reduce the readability

of the code.

5. Programming Languages Editors

 158

Comments in ST

There are two possibilities to write comments in a Structured Text object.

 Start the comment with “(*” and close it with “*)”.This allows comments which run over several

lines. Example:

(* This is a comment. *)

 Single line comments as an extension to the IEC 61131-3 standard: “//” denotes the start of a

comment that ends with the end of the line. Example:

// This is a comment.

The comments can be placed everywhere within the declaration or implementation part of the ST-

Editor.

Nested comments: Comments can be placed within other comments.

Example:

(*

a:=inst.out; (*to be checked *)

b:=b+1;

*)

In this example the comment that begins with the first bracket is not closed by the bracket following

checked, but only by the last bracket.

ST Editor

The ST-Editor is used to create programming objects in the IEC programming language Structured
Text (ST) resp. Extended Structured Text which provides some extensions to the IEC 61131-3

standard.

The ST-Editor is a text editor and thus the corresponding text editor settings in the Options dialog
can be used to configure behavior, appearance and menus. There you can define the default settings

for highlight coloring, line numbers, tabs, indenting and many more.

Notice that block selection is possible by pressing <ALT> while selecting the desired text area with
the mouse.

The editor will be available in the lower part of a window which also includes the Declaration Editor

in the upper part.

Notice that in case of syntactic errors during editing the corresponding messages will be displayed in
the Precompile Messages window. An update of this window is done each time you re-set the focus

to the editor window (for example put cursor in another window and then back to the editor window).

ST Editor in Online Mode

In online mode the Structured Text Editor (ST-Editor) provides views for monitoring and for writing

and forcing the variables and expressions on the controller. Debugging functionality (breakpoints,

stepping etc.) is available. See below.

For information on how to open objects in online mode see User Interface in Online Mode in the
MasterTool IEC XE User Manual– MU299609.

For information on how to enter prepared values for variables in online mode see the item Forcing of

Variables.

Notice that the Editor window of an ST object also includes the Declaration Editor in the upper part.

For information on the Declaration Editor in online mode see Declaration Editor in Online Mode

in the MasterTool IEC XE User Manual– MU299609.

5. Programming Languages Editors

 159

Monitoring

If the inline monitoring is not explicitly de-activated in the Options dialog, small monitoring

windows will be displayed behind each variable showing the actual value (inline monitoring).

Figure 5-39. Online view of a Program Object (MainPrg)

Online view of a function block POU: No values will be viewed. Instead the term <Value of the

expression> will be displayed in column Value and the inline monitoring fields in the

implementation part will show three question marks each.

Figure 5-40. Online view of a Function Block (FB1)

Forcing of Variables

In addition to the possibility to enter a prepared value for a variable within the declaration of any

editor the ST-Editor provides to click on the monitoring box of a variable within the implementation

part (in online mode), whereon you may enter the prepared value in the rising dialogue (Figure 5-41).

5. Programming Languages Editors

 160

Figure 5-41. Prepare Value Dialog

You find the name of the variable completed by its path within the Device tree (Expression), its type

and current value. By activating the corresponding item you may choose:

 Prepare a new value for the next write or force operation:

 Remove a preparation with a value.

 Release the force, without modifying the value.

 Release the force and restore the variable to the value it had before forcing it.

The selected action will be carried out on executing the menu command Force Values (menu Online)

or pressing <F7>.

Breakpoint Positions in ST Editor

The user can set a breakpoint basically at those positions in a POU at which values of variables can

change or at which the program flow branches out resp. another POU is called. In the following
descriptions “{BP}” indicates a possible breakpoint position:

 Assignment: At the beginning of the line. Assignments as expressions define no further

breakpoint positions within a line

FOR loop: before the initialization of the counter, before the test of the counter and before a
statement.

{BP} FOR i := 12 TO {BP} x {BP} BY 1 DO

{BP} [statement 1]

...

{BP} [statement -2]

END_FOR

 WHILE loop: before the test of the condition and before a statement

{BP} WHILE i < 12 DO

{BP} [statement 1]

...

{BP} [statement -1]

END_WHILE

 REPEAT loop: before the test of the condition

5. Programming Languages Editors

 161

REPEAT

{BP} [statement 1]

...

{BP} [statement n-1]

{BP} UNTIL i >= 12

END_REPEAT

 Call of a program or a function block: At the beginning of the line

 At the end of a POU. When stepping through, this position also will be reached after a RETURN

instruction

Breakpoint Display in ST

Figure 5-42. Breakpoint in Online Mode

Figure 5-43. Breakpoint Disabled

Figure 5-44. Program Stop at Breakpoint

NOTE: The following must be noticed for breakpoints in methods: A breakpoint will be set
automatically in all methods which might be called. If a method is called via a pointer on a function
block, breakpoints will be set in the method of the function block and in all derivative function
blocks which are subscribing the method.

FBD/LD/IL Editor

The FBD/LD/IL editor provides commands for working in the combined editor for Function Block

Diagram (FBD), Ladder Logic Diagram (LD) and Instruction List (IL).

Function Block Diagram - FBD

The Function Block Diagram is a graphically oriented programming language. It works with a list of

networks whereby each network contains a graphical structure of boxes and connection lines which

represents either a logical or arithmetic expression, the call of a function block, a jump, or a return

instruction.

5. Programming Languages Editors

 162

Figure 5-45. Function Block Diagram Network

Ladder Diagram - LD

The Ladder Diagram is a graphics oriented programming language which approaches the structure of

an electric circuit.

The Ladder Diagram is suitable for constructing logical switches, on the other hand one can also

create networks as in FBD. Therefore the LD is very useful for controlling the call of other POUs.

The Ladder Diagram consists of a series of networks, each being limited by vertical current lines

(power rail) on the left and on the right. A network contains a circuit diagram made up of contacts,

coils, optionally additional POUs (boxes) and connecting lines. On the left side there is a series of
contacts passing from left to right the condition “ON” or “OFF” which corresponds to the Boolean

values TRUE and FALSE. To each contact a Boolean variable is assigned.

In case of contacts, if this variable is TRUE, the condition is transmitted from left to right along the
line connector. On the other hand if this variable is FALSE, the condition spread to the right will

always be OFF.

In case of negated contacts, if this variable is TRUE, the condition spread to the right will always be

OFF. However in the case where the variable is FALSE, the condition is transmitted from left to right
along the line connector.

Figure 5-46. LD Network

Instruction List - IL

The Instruction List is similar to Assembly language programming, in accordance with IEC 61131-3.

This language supports programming based on an accumulator. All IEC 61131-3 operators are

supported as well as multiple inputs / multiple outputs, negations, comments, set / reset of outputs

and unconditional /conditional jumps.

Each instruction is primarily based on the loading of values into the accumulator by using the LD
operator. After that the operation is executed with the first parameter taken out of the accumulator.

The result of the operation again is available in the accumulator, from where the user should store it

with the ST instruction.

5. Programming Languages Editors

 163

In order to program conditional executions or loops IL supports both comparing operators like EQ,

GT, LT, GE, LE, NE and jumps. The latter can be unconditional (JMP) or conditional (JMPC /

JMPCN). For conditional jumps the accumulator's value is checked on TRUE or FALSE.

An instruction list (IL) consists of a series of instructions. Each instruction begins in a new line and

contains an operator and, depending on the type of operation, one or more operands separated by

commas. The operator might be extended by a modifier.

In a line before an instruction there can be an identification mark (label) followed by a colon (:), for

example “ml:” in the example shown below. A label can be the target of a jump instruction, for

example “JMPC next” in the example shown below.

A comment must be placed as last element of a line.

Empty lines can be inserted between instructions.

Figure 5-47. IL Program Example in IL Table editor

The IL Editor is a table editor integrated in the FBD/LD/IL.

Modifiers and Operators in IL

The following modifiers can be used in Instruction List:

Modifier Context Description

C With JMP, CAL, RET The instruction only will be executed if the result of
the preceding expression is TRUE.

N With JMPC, CALC, RETC The instruction will only be executed if the result of

the preceding expression is FALSE.

N In any other case Negation of the operand (not of the accumulator).

Table 5-11. Modifiers

The following Table 5-12 shows which operators can be used in combination with the specified

modifiers.

The accumulator always stores the current value, resulting from the preceding operation.

5. Programming Languages Editors

 164

Operator Modifiers Meaning Example

LD N Loads the (negated) value of the operand into

the accumulator.

LD iVar

ST N Stores the (negated) content of the accumulator
into the operand variable.

ST iErg

S Sets the operand (type BOOL) to TRUE when

the content of the accumulator is TRUE.

S bVar1

R Sets the operand (type BOOL) to FALSE when

the content of the accumulator is TRUE.

R bVar1

AND N,(Bitwise AND of the accumulator and the
(negated) operand.

AND bVar2

OR N,(Bitwise OR of the accumulator and the

(negated) operand.

OR xVar

XOR N,(Bitwise exclusive OR of the accumulator and

the negated) operand.

XOR

N,(bVar1,bVar2)

NOT Bitwise negation of the accumulator's content.

ADD (Addition of accumulator and operand. Result is

copied to the accumulator.

ADD (iVar1,iVar2)

SUB (Subtraction of accumulator and operand. Result
is copied to the accumulator.

SUB iVar2

MUL (Multiplication of accumulator and operand.

Result is copied to the accumulator.

MUL iVar2

DIV (Division of accumulator and operand. Result is

copied to the accumulator.

DIV 44

GT (Check if accumulator is greater than operand
(>). Result (BOOL) is copied into the

accumulator.

GT 23

GE (Check if accumulator is greater than or equal to

the operand (>=). Result (BOOL) is copied into
the accumulator.

GE iVar2

EQ (Check if accumulator is equal to the operand
(=). Result (BOOL) is copied into the

accumulator.

EQ iVar2

NE (Check if accumulator is not equal to the

operand (<>). Result (BOOL) is copied into the
accumulator.

NE iVar1

LE (Check if accumulator is less than or equal to the

operand (<=). Result (BOOL) is copied into the
accumulator.

LE 5

LT (Check if accumulator is less than operand (<).
Result (BOOL) is copied into the accumulator.

LT cVar1

JMP CN Unconditional (conditional) jump to the label. JMPN next

CAL CN Call (Conditional) of a PROGRAM or

FUNCTION_BLOCK (if accumulator is TRUE).

CAL prog1

RET Early return of the POU and jump back to the

calling POU.

RET

RET C Conditional - if accumulator is TRUE…Early

return of the POU and jump back to the calling
POU.

RETC

RET CN Conditional - if accumulator is FALSE… Early

return of the POU and jump back to the calling
POU.

RETCN

) Evaluate deferred Operation.

Table 5-12. Operators and Modifiers

See Operators.

See also Working in the IL Editor View for how to use and handle multiple operands, complex

operands, function / method / function block / program / action calls and jumps.

5. Programming Languages Editors

 165

Figure 5-48. IL Program with Operators

Working in the FBD e LD Editor View

Networks are the basic entities in FBD and LD programming. Each network contains a structure that

displays a logical or an arithmetical expression, a POU (function, program, function block call, etc.),

a jump, a return instruction.

When creating a new object, the editor window automatically contains one empty network.

Notice the general editor settings in the Options dialog, tab FBD, LD and IL editor.

The cursor being placed on the name of a variable or box parameter will prompt a tooltip showing the
respective type and in case of function block instances the initialization value. For IEC operators

SEL, LIMIT, MUX a short description on the inputs will appear. If defined, also the address and the

symbol comment will be shown as well as the operand comment (in quotation marks in a second

line).

Inserting and arranging elements:

 Elements also can be directly dragged with the mouse from the toolbox to the editor window or

from one position within the editor to another ("Drag&Drop"). For this purpose select the

element by a mouse-click, then keep the mouse-button pressed and drag the element into the
respective network in the editor view. As soon as you have reached the network, all possible

insert positions for the respective type of element will be indicated by grey position markers.

When you place the mouse-cursor on one of these positions, the position marker will change to
green and you can release the mouse-button in order to place the element at that position

 The Cut, Copy, Paste and Delete commands, by default available in the Edit menu, can be used

to arrange elements. Copying an element is also possible by drag and drop: Select the element

within a network by a mouse-click and while keeping the mouse button pressed, drag it to the

target position. As soon as that is reached (green position marker), a plus-symbol will be added
to the cursor symbol. Release the mouse-button to insert the element

 For all possible cursor positions see: Cursor Positions in FBD, LD and IL

Navigating:

 The arrow keys might be used to jump to the next/previous cursor position; also possible between

networks

 The <TAB> key might be used to jump to the next/previous cursor position within a network

 <CTRL>+<HOME> scrolls to the begin of the document and marks the first network

 <CTRL>+<END> scrolls to the end of the document and marks the last network

 <PAGEUP> scrolls one screen up and marks the topmost rectangle

 <PAGEDOWN> scrolls one screen down and marks the topmost rectangle

Selecting:

 An element, also network, can be selected via taking the respective cursor position by a mouse-

click or using the arrow or tabulator keys

5. Programming Languages Editors

 166

 Multiselection of non-adjacent elements resp. networks is possible by keeping the while selecting

the desired elements one after the other

 In the LD editor multiselection of adjacent elements or networks can be done by keeping pressed

the <SHIFT> key while selecting two contacts determining start and end of the desired network

section. If you want to cut (copy) and paste a section of a network, it will be sufficient to keep
the <CTRL> key pressed while selecting just two contacts defining the borders of this section.

Then the elements between will be noticed automatically

Figure 5-49. FBD Editor Window

Figure 5-50. LD Editor Window

For information on the languages see:

 Function Block Diagram - FBD

 Ladder Diagram - LD

Working in the IL Editor View

The IL (Instruction List) editor is a table editor in contrast to the pure text editor used in MasterTool

IEC. The network structure of FBD or LD programs is also represented in an IL program. Basically

5. Programming Languages Editors

 167

one network is sufficient in an IL program, but considering switching between FBD, LD and IL you

also might consciously use networks for structuring an IL program.

Notice the general editor settings in the Options dialog, tab FBD, LD and IL editor.

Tooltip containing information on variables or box parameters: Please see Working in the FBD e

LD Editor View.

Inserting and arranging elements:

The commands for working in the editor by default are available in the FBD/LD/IL menu, the most

important always also in the context menu.

Programming units, that is elements, are inserted each at the current cursor position via the Insert

command, by default available in the FBD/LD/IL menu.

The Cut, Copy, Paste and Delete commands, by default available in the Edit menu, can be used to

arrange elements.

See below to the tabular editor is structured and how you can navigate through it using complex
operands, calls and jumps.

Structure of the do IL Tabular Editor

Each program line is written in a table row, structured in fields by the following table columns:

Column Contains Description

1 Operator This field contains the IL operator (LD, ST, CAL, AND, OR
etc.) or a function name. In case of a function block call

here also the respective parameters are specified, in this
case in the Prefix field ":=" or "=>" must be entered.

2 Operand This field contains exactly one operand or a jump label. If
more than one operand is needed (multiple/extensible

operators "AND A, B, C" or function calls with several
parameters), those must be written into the following lines
where the operator field is to be left empty. In this case

add a parameter-separating comma. In case of a function
block, program or action call the appropriate opening
and/or closing brackets must be added.

3 Address This field contains the address of the operand as defined

in the declaration part. The field cannot be edited and can
be switched

 on or off via option 'Show symbol address'.

4 Symbol comment This field contains the comment as defined for the

operand in the declaration part. The field cannot be edited
and can be switched on or off via option 'Show symbol

comment'.

5 Operand comment This field contains the comment for the current line. It is

editable and can be switched on or off via option 'Show
operand comment'.

Table 5-13. Structure of the do IL Tabular Editor

5. Programming Languages Editors

 168

Figure 5-51. IL Tabular Editor

Navigating:

 <↑> and <↓> keys: Moving to the field above/ below

 <TAB>: Moving within a line to the field to the right

 <SHIFT> + <TAB>: Moving within in a line to the field to the left

 <SPACE>: Open the currently selected field for editing. Alternatively perform a further mouse-

click on the field. If applicable the input assistant will be available via the button . A
currently opened edit field can be closed by <ENTER> confirming the current entries, or by

<ESC>, cancelling the made entries

 <CTRL> + <ENTER>: Enter a new line below the current one

 <DELETE>: Remove the current line, that is where you have currently selected any field

 Cut, Copy, Paste: To copy one or several lines select at least one field of the line(s) and use the

copy command. To cut a line, use the Cut command. Paste will insert the previously copied/cut

lines before the line where currently a field is selected. If no field is selected they will be inserted
at the end of the network

 <CTRL> + <HOME>: scrolls to the begin of the document and marks the first network

 <CTRL> + <END>: scrolls to the end of the document and marks the last network

 <PAGEUP>: scrolls one screen up and marks the topmost rectangle

 <PAGEDOWN>: scrolls one screen down and marks the topmost rectangle

Multiple Operands (Extensible Operators)

If the same operator is used with multiple operands, two ways of programming are possible:

 The operands are entered in subsequent lines, separated by commas, example:

 The instruction is repeated in subsequent lines, example:

5. Programming Languages Editors

 169

Complex Operands

If a complex operand is to be used, enter an opening bracket before, then use the following lines for

the particular operand components and below those, in a separate line enter the closing bracket.

Example: rotating a string by 1 character at each cycle.

Function Calls

Enter the function name in the operator field. The first input parameter is to be given as an operand in

a preceding LD operation. If there are further parameters, the next one must be given in the same line

as the function name. The further ones can also be added in this line, separated by commas, or in

subsequent lines.

The function return value will be stored in the accumulator, but notice the following restriction

concerning the IEC standard: A function call with multiple return values is not possible, only one

return value can be used for a succeeding operation.

Example: Function GeomAverage, which has three input parameters, is called. The first parameter is

given by X7 in a preceding operation, the second one, 25 is given behind the function name. The

third one is given by variable tvar, either in the same line or in the subsequent one. The return value
is assigned to variable Ave.

Example for function call GEOMAVERAGE in ST:

Ave := GeomAverage(X7, 25, tvar);

Example for function call GEOMAVERAGE in IL:

Function Block Calls, Program Calls

Use the CAL- or CALC operator. Enter the function block instance name resp. the program name in

the operand field (second column) followed by the opening bracket. Enter the input parameters each
in one of the following lines:

First column: operator (parameter name) and:

 “:=” for input parameters

5. Programming Languages Editors

 170

 “=>” for output parameters

Second column: operand (actual parameter) and:

 “,” if further parameters follow

 “)” after the last parameter

 “()” in case of parameter-less calls

Example: Call of POUToCAll with two input and two output parameters.

It is not necessary to use all parameters of a function block or program.

NOTE: As a restriction to the IEC standard complex expressions cannot be used, those must be
assigned to the input of the function block or program before the call instruction.

Action Call

To be done like a function block or program call. The action name is to be appended to the instance

name or program name.

Example of calling the action ResetAction in IL:

Method Call

To be done like a function call. The instance name with appended method name is to be entered in

the first column (operator).

Example of calling the method Home in IL:

Jump

A jump is programmed by JMP in the first column (operator) and a label name in the second column

(operand). The label is to be defined in the target network in the label field. Remark that the
statement list preceding the unconditional jump has to end with one of the following commands: ST,

STN, S, R, CAL, RET or another JMP. This is not the case for a conditional jump being programmed

by JMPC in the first column (operator) instead of JMP. The execution of the jump depends on the

value loaded.

5. Programming Languages Editors

 171

Example: Conditional jump instruction; in case bCallRestAction is TRUE, the program should jump

to the network labeled with Cont:

Cursor Positions in FBD, LD and IL

IL Editor

This is a text editor, structured in form of a table. Each table cell is a possible cursor position. See

also: Working in the IL Editor View.

FBD and LD Editors

These are graphic editors, see below examples to showing the possible cursor positions: text, input,

output, box, contact, coil, line between elements, sub-network, network. Actions like Cut, Copy,

Paste, Delete and other editor-specific commands refer to the current cursor position resp. selected
element. See: Working in the FBD e LD Editor View.

Basically in FBD a dotted rectangle around the respective element indicates the current position of

the cursor, additionally texts and boxes get blue and red-shadowed.

In LD coils and contacts get red-colored as soon as the cursor is positioned on.

The cursor position determines which elements are available in the context menu for getting inserted.

Possible cursor positions:

Every text field: in the left picture the possible cursor positions are marked by a red-frame, the right
picture shows a box with the cursor being placed in the “AND” field. Notice the possibility to enter

addresses instead of variables names if configured appropriately in the Options dialog, tab FBD and

LD Editor.

Figure 5-52. Text Fields

 Every input:

Figure 5-53. Inputs

 Every operator, function, or function block:

Figure 5-54. Operator, Function or Function Block

 Outputs, if an assignment or a jump comes afterward:

5. Programming Languages Editors

 172

Figure 5-55. Output

 Just before the lined cross above an assignment, before a jump or a return instruction:

Figure 5-56. Before the Crossed Line

 The right-most cursor position in the network or anywhere else in the network besides the other

cursor positions. This will select the whole network:

Figure 5-57. Cursor Position (Right in the Network)

 The lined cross directly in front of an assignment:

Figure 5-58. Front of Assignment

 Every contact:

Figure 5-59. Contact

 Every coil:

Figure 5-60. Coil

 The connecting line between the contacts and the coils.

5. Programming Languages Editors

 173

Figure 5-61. Connecting Line Position

 Branch/ sub network within a network:

Figure 5-62. Branch or Sub network

FBD/LD/IL Menu

When the cursor is placed in the FBD/LD/IL editor window, the FBD/LD/IL menu by default is

available in the menu bar, providing the commands for programming in the currently set editor view.

Figure 5-63. FBD/LD/IL Menu in FBD Editor View

For a description of the commands see: Editor FBD/LD/IL Commands in the MasterTool IEC XE

User Manual - MU299609.

5. Programming Languages Editors

 174

Elements

FBD/LD/IL Toolbox

The FBD/LD/IL editor provides a toolbox which offers the programming elements for being inserted
in the editor window by drag&drop. The toolbox by default can be opened via command Toolbox in

the View menu.

It depends on the currently active editor view which elements are available for inserting (see the
respective description of the Insert commands). The elements are sorted in categories: General

(general elements like Network, Assignment etc..), Boolean operators, Math operators, Other

operators (SEL, MUX, LIMIT and MOVE), Function blocks (R_TRIG, F_TRIG, RS, SR, TON,

TOF, CTD, CTU), Ladder elements and POUs (user-defined).

The POUs category lists all POUs, which have been defined by the user below the same application

as the FBD/LD/IL object which is currently opened in the editor. If a POU has got assigned a bitmap

in its properties, then this will be displayed before the POU name, otherwise the standard icon for
indicating the POU type. The list will be updated automatically when POUs are added or removed

from the application.

The category folders can be unfolded by a mouse-click on the button showing the respective category

name. See in the Figure 5-64: Category General currently is unfolded, the others are folded. The
picture shows an example for inserting an Assignment element by drag&drop from the toolbox.

Currently only section General in the toolbox is unfolded.

Figure 5-64. Inserting from Toolbox

To insert an element in the editor, select it in the toolbox by a mouse-click and by drag&drop bring it
to the editor window. The possible insert positions will be indicated by position markers, which

appear as long as the element is drawn - keeping the mouse button pressed - across the editor

window. Always the nearest possible position will light up green. When leaving the mouse button the

element will be inserted at the currently green position.

If you draw a box element on an existing box element, the new one will replace the old one; if inputs

and outputs already have been assigned, those primarily will remain as defined.

Network

A network is the basic entity of a FBD or LD program. In the FBD/LD editor the networks are

arranged in a vertical list. Each network is designated on the left side by a serial network number and

has a structure consisting of either a logical or an arithmetic expression, a program, function or
function block call, and a jump or a return instruction.

The IL editor, due to the common editor base with the FBD and LD editors, also uses the network

element. If an object initially was programmed in FBD or LD and then is converted to IL, the

networks will be still present in the IL program. Vice versa, if you start programming an object in IL,

5. Programming Languages Editors

 175

you at least need 1 network element which might contain all instructions, but you also can use further

networks to structure the program, for example if considering a conversion to FBD or LD.

A network optionally can get assigned a title, a comment and a label:

The availability of the title and the comment fields can be switched on and off in the Options dialog,

tab FBD, LD, IL Editor. If the option is activated, you can open an edit field for the title by a mouse-

click in the network directly below the upper border. For entering a comment correspondingly open
an edit field directly below the title field. The comment might be multi-lined. Linebreaks can be

inserted via <ENTER>, the input of the comment text is terminated by <CTRL>+<ENTER>.

To add a label, which then can be addressed by a jump, use the command Insert label. If a label is

defined, it will be displayed below the title and comment field resp. - if those are not available -
directly below the upper border of the network.

Figure 5-65. Positions of Title, Comment and Label in a Network

A network can be set in comment state, which effects that the network is not processed but displayed
and handled like a comment.

On a currently selected network the default commands for Copy, Cut, Insert and Delete can be

applied.

NOTE: The right mouse click being executed over a title, comment or label will select this entry
only instead of the whole network. So the execution of the default commands will have no influence
on the network itself.

To insert a network, use command Insert Network or drag it from the toolbox. A network with all
belonging elements can also be copied or moved by drag&drop within the editor.

Notice the possibility to create sub networks by inserting branches.

RET Network

In online mode automatically an additional, empty network will be displayed below the existing

networks. Instead of a network number it is identified by RET. It represents the position at which the

execution will return to the calling POU and provides a possible halt position.

Assignment in FBD/LD/IL

Depending on the selected position in FBD or LD an assignment will be inserted directly in front of

the selected input, directly after the selected output or at the end of the network. In an LD network an

assignment will be displayed as a coil.

Alternatively drag the assignment element from the toolbox or copy or move it by drag&drop within

the editor view.

After insertion the text string “???” can be replaced by the name of the variable that is to be assigned.

For this via the button you can use the Input Assistant ().

In IL an assignment is programmed via LD and ST instructions. See in this context: Modifiers and

Operators in IL.

5. Programming Languages Editors

 176

Jump

Depending on the selected position in FBD or LD a jump will be inserted directly in front of the

selected input, directly after the selected output or at the end of the network. Alternatively drag the
jump element from the Toolbox or copy or move it by drag&drop within the editor.

After insertion the automatically entered “???” can be replaced by the label to which the jump should

be assigned.

In IL a jump is inserted via an JMP instruction.

Label

Each FBD / LD or IL network below the network comment field has a text input field for defining a

label (see command Insert label). The label is an optional identifier for the network and can be
addressed when defining a jump. It can consist of any sequence of characters.

Figure 5-66. Position of the Label in a Network

See the Options dialog, tab FBD, LD, IL Editor for defining the display of comment and title.

Boxes in FBD/LD/IL

A box, insertable in a FBD, LD or IL network, is a complex element and can represent additional

functions like e.g. Timers, Counters, arithmetic operations or also programs, IEC functions and IEC
function blocks.

A box can have any desired inputs and outputs and can be provided by a system library or be

programmed by the user. At least one input and one output however must be assigned to Boolean
values.

If provided with the respective module and if option Show box icon is activated, an icon will be

displayed within the box.

Use in FBD, LD

A box can be positioned in the left part of a LD network (like a contact) resp. in a FBD network by

using command Insert Box, Insert Empty Box. Alternatively it can be inserted from the Toolbox or

copied or moved within the editor via drag&drop. Please see Insert Box in the MasterTool IEC XE
User Manual - MU299609.

Use in IL

In an IL program a CAL instruction with parameters will be inserted in order to represent a box
element.

An update of the box parameters (inputs, outputs) - in case the box interface has been changed - in

the current implementation can be done without having to re-insert the box by the Update

Parameters command.

RETURN Instruction in FBD/LD/IL

With a RETURN instruction the FBD, LD or IL POU can be left.

5. Programming Languages Editors

 177

In a FBD or LD network it can be placed in parallel or at the end of the previous elements. If the

input of a RETURN is TRUE, the processing of the POU immediately will be aborted.

For inserting use command Insert Return. Alternatively drag the element from the Toolbox or copy or
move it from another position within the editor.

.

Figure 5-67. RETURN Element

In IL the RET instruction is used.

Branch / Hanging Coil in FBD/LD/IL

FBD, LD

In a FBD/ LD network a branch and a hanging coil splits up the processing line as from the current
cursor position. The processing line will continue in two "sub networks" which will be executed one

after each other from up to down. Each sub network can get a further branch, such allowing multiple

branching within a network.

Each sub network gets an own "marker" (an upstanding rectangle symbol) which can be selected

(cursor position 11) in order to perform actions on this arm of the branch.

Figure 5-68. Branch and Markers

In FBD a branch gets inserted via command Insert Branch. Alternatively drag the element from the

Toolbox. To verify the possible insert positions, see Insert Branch in the MasterTool IEC XE User

Manual - MU299609.

NOTE: Cut and Paste is not possible for sub networks.

See the example shown in the Figure 5-69: A branch has been inserted at the SUB box output. This
created two sub networks, each selectable by its subnet marker. After that an ADD box was added in

each sub network.

5. Programming Languages Editors

 178

Figure 5-69. Example in FBD, Inserting a Branch

To delete a sub network, first remove all elements of the sub network, that is all elements which are

positioned to the right of the sub network’s marker, then select the marker and use the standard

Delete command (). See in the Figure 5-70: The 3-input-OR element must be deleted before

you can select and delete the marker of the lower sub network.

Figure 5-70. Delete Branch and Sub network

Execution in online mode:

The particular branches will be executed from left to right and then from up to down.

IL (Instruction List)

In IL a "branch" resp. "hanging coil" is represented by an appropriate order of instructions. See in

this context: Modifiers and Operators in IL.

Contact

This is a LD element.

Each network in LD in its left part contains one or several contacts. Contacts are represented by two

parallel lines:

Figure 5-71. Contact

5. Programming Languages Editors

 179

Contacts pass on condition ON (TRUE) or OFF (FALSE) from left to right.

A Boolean variable is assigned to each contact. If this variable is TRUE, the condition is passed from

left to right and finally to a coil in the right part of the network, otherwise the right connection
receives the value FALSE.

Multiple contacts can be connected in series as well as in parallel. In case of two parallel contacts

only one of them must transmit the value TRUE in order to get the parallel branch transmit the value
TRUE. In case of contacts connected in series all contacts must transmit the condition TRUE in order

to get the last contact transmit the TRUE condition.

So the contact arrangement corresponds to either an electric parallel or a series circuit.

A contact can also be negated, recognizable by the slash in the contact symbol:

Figure 5-72. Negated Contact

A negated contact passes on the incoming condition (TRUE or FALSE) only if the assigned Boolean

variable is FALSE. Notice that the Toolbox directly provides negated contact elements.

A contact can be inserted in a LD network via one of the commands Insert Contact or Insert Contact
(right), Insert Contact Parallel (above) or Insert Contact Parallel (below) which by default are part

of the FBD/LD/IL menu. Alternatively the element can be inserted via drag&drop from the Toolbox

or from another position within the editor.

FBD, IL

If you are currently working in FBD or IL view, the command will not be available, but contacts and

coils inserted in a LD network will be represented by corresponding FBD elements and IL
instructions.

Coil

This is a LD element.

On the right side of a LD network there can be any number of so-called coils which are represented
by parentheses:

Figure 5-73. Coil

They can only be arranged in parallel. A coil transmits the value of the connections from left to right

and copies it to an appropriate Boolean variable. At the entry line the value ON (TRUE) or the value
OFF (FALSE) can be present. Contacts and coils can also be negated, recognizable by the slash in

the coil symbol:

Figure 5-74. Negated Coil

5. Programming Languages Editors

 180

In this case the negated value of the incoming signal will be copied to the appropriate boolean

variable, thus: a negated contact only will connect through if the appropriate boolean value is

FALSE.

A coil can be inserted in a network via command Insert Assignment which per default is part of the

FBD/LD/IL menu. Alternatively the element can be inserted via drag&drop from the Toolbox

(Ladder elements) or from another position within the editor. See also: Set/Reset Coils.

FBD, IL

If you are currently working in FBD or IL view, the command will not be available, but contacts and

coils inserted in a LD network will be represented by corresponding FBD elements resp. IL

instructions.

Set/Reset in FBD/LD/IL

FBD and LD

A boolean output in FBD or correspondingly a LD coil can be Set or Reset. To change between the
set states use the respective command Set/Reset from the context menu when the output is selected.

The output coil will be marked by a S or a R.

Set: If value TRUE arrives at a set output resp. coil, this output/coil will get TRUE and keep TRUE.

This value cannot be overwritten at this position as long as the application is running.

Reset: If value TRUE arrives at a reset output resp. coil, this output/coil will get FALSE and keep

FALSE. This value cannot be overwritten at this position as long as the application is running.

Figure 5-75. Set Output in FBD

See also: Set/Reset Coils.

IL

In IL, an instruction list the S and R operators are used to set or reset an operand.

Set/Reset Coils

Coils in the coil symbol: S can also be defined as set or reset coils. One can recognize a set coil by
the (S). A set coil will never overwrite the value TRUE in the appropriate boolean variable. That is,

the variable once set to TRUE remains TRUE.

One can recognize a reset coil by the R in the coil symbol: (R). A reset coil will never overwrite the
value FALSE in the appropriate boolean variable: the variable once set to FALSE will remain

FALSE.

In the LD editor Set coils and Reset coils can directly be inserted via drag&drop from the Toolbox,
category Ladder elements.

Figure 5-76. Set and Reset Coils

5. Programming Languages Editors

 181

FBD/LD/IL Editors in Online Mode

In online mode the FBD/LD/IL Editor provides views for monitoring and for writing and forcing the

variables and expressions on the controller. Debugging functionality (breakpoints, stepping etc.) is
available. See below.

For information on how to open objects in online mode see User Interface in Online Mode in the

MasterTool IEC XE User Manual - MU299609.

Notice that the editor window of an FBD, LD or IL object also includes the Declaration Editor in the

upper part. See also in this context: Declaration Editor in Online Mode in the MasterTool IEC XE

User Manual - MU299609.

Monitoring

If the inline monitoring is not explicitly deactivated in the Options dialog, it will be supplemented in

FBD or LD editor by small monitoring windows behind each variable resp. by an additional

monitoring column showing the actual values (inline monitoring). This is even the case for not
assigned function block inputs and outputs.

The inline monitoring window of a variable shows a little red triangle in the upper left corner, if the

variable currently is forced, a blue one in the lower left corner, if the variable currently is prepared

for writing or forcing. On Figure 5-77 an example for a variable which is currently forced and
prepared for releasing the force:

Figure 5-77. Variable Which is Forced and Prepared for Releasing the Force

5. Programming Languages Editors

 182

Figure 5-78. Online View of a FBD Program

Figure 5-79. Online View of an IL Program

In online view ladder networks have animated connections: Connections with value TRUE are

displayed in bold blue, connections with value FALSE in bold black, whereas connections with no

known value or with an analog value are displayed in standard outline (black and not fat).

5. Programming Languages Editors

 183

NOTE: The values of the connections are calculated from the monitoring values. It is no real power
flow.

Figure 5-80. Online View of a LD Program

Notice for the online view of a POU of type function block: In the implementation part no values will

be viewed in the monitoring windows but <Value of the expression> and the inline monitoring fields

in the implementation part will show three question marks each.

Forcing/Writing of variables

In online mode you can prepare a value for forcing or writing a variable either in the declaration

editor or within the implementation part. In the implementation part at a mouse click on the variable

the following dialog will open:

Figure 5-81. Dialog - Prepare Value

You find the name of the variable completed by its path within the Device tree (Expression), its Type

and Current value. By activating the corresponding item you may choose whether you want to

prepare:

 Prepare a new value for the next write or force operation:

5. Programming Languages Editors

 184

 Remove preparation with a value.

 Release the force, without modifying the value.

 Release the force and restore the variable to the value it had before forcing it.

The selected action will be carried out on executing the menu command Force Values (per default in

the Online menu) or pressing <F7>.

Breakpoint and Halt Positions

Possible positions which can be defined for a breakpoint (halt position) for debugging purposes,

basically are those positions at which values of variables can change (statements), at which the

program flow branches out, or at which another POU is called. That is the following positions:

 On the network at a whole which effects that the breakpoint will be applied to the first possible

position within the network

 On a box if this contains a statement; so not possible on operator boxes like for example ADD,

DIV. Regard however the note inserted below

 On an assignment

 At the end of a POU at the point of return to the caller; in online mode automatically an empty

network will be displayed for this purpose, which instead of a network number is identified by

RET

NOTE: Currently you cannot set a breakpoint directly on the first box of a network. If however a
breakpoint is set on the complete network, the halt position will automatically be applied to the first
box.

You might have a look at the selection list within the breakpoint dialog for all currently possible

positions.

A network containing any active breakpoint position is marked with the breakpoint symbol (red filled

circle) right to the network number and a red-shaded rectangle background for the first possible
breakpoint position within the network. Deactivated breakpoint positions are indicated by a non-

filled red circle resp. a surrounding non-filled red rectangle (Figure 5-83).

Figure 5-82. Breakpoint (Set and Reached)

5. Programming Languages Editors

 185

Figure 5-83. Breakpoint Deactivated

As soon as a breakpoint position is reached during stepping or program processing, a yellow arrow
will be displayed in the breakpoint symbol and the red shaded area will change to yellow.

The currently reached halt position is indicated by a yellow shadow and the subsequent, not yet

reached one by a red shadow:

Figure 5-84. Halt Positions Shown in FBD

Figure 5-85. Halt Positions Shown in IL

NOTE: Notice for breakpoints in methods: A breakpoint will be set automatically in all methods
which might be called. If a method is called via a pointer on a function block, breakpoints will be set
in the method of the function block and in all derivative function blocks which are subscribing the
method.

6. Libraries

 186

6. Libraries

The library standard.library is installed by default. It contains all functions and function blocks which

are required according to the IEC61131-3 standard as default POUs for an IEC programming system.

Several further libraries are needed for the various functionalities of the programming system, like

for example visualization, profiling etc. Those are "implicitly" used libraries, by default will be

included automatically in a project and the user has not to deal with them explicitly.

See also in the MasterTool IEC XE User Manual – MU299609, Library Installation and Library

Manager Editor.

The Standard.library Library

The library standard.library is by default provided with the MasterTool IEC XE programming

system.

It contains all functions and function blocks which are required matching IEC 61131-3 as standard

POUs for an IEC programming system. The difference between a standard function and an operator

is that the operator is implicitly recognized by the programming system, while the standard POUs

must be tied to the project (standard.library).

String Functions

LEN

Provided by standard.library.

Function of type STRING, returns the length of a string.

Input: STR : STRING, string to be analyzed.

Return value: INT, length of string (number of characters).

Example in IL:

The result is “4”.

Example in FBD:

Example in ST:

VarINT1 := LEN ('SUSI');

LEFT

Provided by standard.library.

Function of type STRING. Returns the left, initial string for a given string.

Inputs:

STR : STRING; string to be analyzed.

SIZE : INT; length of left initial string (number of characters).

6. Libraries

 187

Return value: STRING; initial string.

LEFT (STR, SIZE) means: Return the first SIZE characters from the right in the string STR.

Example in IL:

The result is “SUS”.

Example in FBD:

Example in ST:

VarSTRING1 := LEFT ('SUSI',3);

RIGHT

Provided by standard.library.

Function of type STRING. Returns the right, initial string for a given string.

Inputs:

STR: STRING; string to be analyzed.

SIZE: INT; number of characters to be counted from the right in string STR.

Return value:

STRING; initial right string.

RIGHT (STR, SIZE) means: Return the first SIZE character from the right in the string STR.

Example in IL:

The result is “USI”.

Example in FBD:

Example in ST:

VarSTRING1 := RIGHT ('SUSI',3);

MID

Provided by standard.library.

Function of type STRING, returns a partial string from within a string.

Inputs:

STR: STRING; string to be analyzed.

6. Libraries

 188

LEN: INT; length of the partial string (number of characters).

POS : INT; start position for the partial string, number of characters counted from the left of STR.

Return value: STRING, partial string.

MID (STR, LEN, POS) means: Retrieve LEN characters from the STR string beginning with the

character at position POS.

Example in IL:

The result is “US”.

Example in FBD:

Example in ST:

VarSTRING1 := MID ('SUSI',2,2);

CONCAT

Provided by standard.library.

Function of type STRING, doing a concatenation (combination) of two strings.

Inputs: STR1, STR2: STRING; strings to be concatenated.

Return value: STRING, concatenated string.

CONCAT(STR1,STR2) means to connect STR1 and STR2 to a single string STR1STR2.

Example in IL:

The result is “SUSIWILLI”.

Example in FBD:

Example in ST:

VarSTRING1 := CONCAT ('SUSI','WILLI');

INSERT

Provided by standard.library.

Function of type STRING, inserts a string into another string at a defined point.

6. Libraries

 189

Inputs:

STR1: STRING; string into which STR2 has to be inserted.

STR2 : STRING; string which has to be inserted into STR1.

POS : INT; Position in STR1 where STR2 has to be inserted, number of characters counted from left.

Return value: STRING, resulting string.

INSERT(STR1, STR2, POS) means: Insert STR2 into STR1 after position POS.

Example in IL:

The result is “SUXYSI”.

Example in FBD:

Example in ST:

VarSTRING1 := INSERT ('SUSI','XY',2);

DELETE

Provided by standard.library.

Function of type STRING, removes a partial string from a larger string at a defined position.

Inputs:

STR: STRING; string from which a part should be deleted.

LEN: INT; length of the partial string to be deleted (number of characters).

POS: INT; position in STR where the deletion of LEN characters should start, counted from left.

Return value: STRING, string remaining after deletion.

DELETE(STR, L, P) means: Delete L characters from STR, beginning with the character in the POS
position.

Example in IL:

The result is “SUSI”.

Example in FBD:

6. Libraries

 190

Example in ST:

Var1 := DELETE ('SUXYSI',2,3);

REPLACE

Provided by standard.library.

Function of type STRING, replaces a partial string from a larger string with another string.

Inputs:

STR1: STRING, string of which a part should be replaced by string STR2.

STR2: STRING, string which should replace a part of STR1.

L: INT, length of partial string in STR1 which should be replaced.

P : INT, position where STR2 should be inserted instead of the existing L characters.

Return value: STRING, resulting string.

REPLACE(STR1, STR2, L, P) means: Replace L characters from STR1 by STR2, beginning with
the character in the P position.

Example in IL:

Result is “SKYSI”.

Example in FBD:

Example in ST:

VarSTRING1 := REPLACE ('SUXYSI','K',2,2);

FIND

Provided by standard.library.

Function of type INT, searches for the position of a partial string within a string.

Inputs:

STR1: STRING, string within which STR2 should be searched.

STR2: STRING, string whose position should be searched in STR1.

Return value: INT, start position of STR2 in STR1. "0" if STR2 is not found in STR1.

6. Libraries

 191

FIND(STR1, STR2) means: Find the position of the first character where STR2 appears in STR1 for

the first time. If STR2 is not found in STR1, then OUT:=0.

Example in IL:

The result is “4”.

Example in FBD:

Example in ST:

arINT1 := FIND ('abcdef','de');

Bistable Function Blocks

SR

Provided by standard.library.

Function block, making bistable function blocks dominant.

Inputs:

SET1 : BOOL;

RESET : BOOL;

Outputs:

Q1 : BOOL;

Q1 = SR (SET1, RESET):

Q1 = (NOT RESET AND Q1) OR SET1

Declaration example:

SRInst : SR ;

Example in IL:

Example in FBD:

Example in ST:

SRInst(SET1:= VarBOOL1 , RESET:=VarBOOL2);

VarBOOL3 := SRInst.Q1;

6. Libraries

 192

RS

Provided by standard.library.

Function block, resetting bistable function blocks.

Inputs:

SET: BOOL;

RESET1: BOOL;

Outputs:

Q1: BOOL;

Q1 = RS (SET, RESET1):

Q1 = NOT RESET1 AND (Q1 OR SET)

Declaration example:

RSInst : RS ;

Example in IL:

Example in FBD:

Example in ST:

RSInst(SET:= VarBOOL1 , RESET1:=VarBOOL2);

VarBOOL3 := RSInst.Q1;

Trigger

R_TRIG

Provided by standard.library.

Function block detecting a rising edge.

Inputs:

CLK: BOOL; incoming Boolean signal to be checked for rising edge.

Outputs:

Q: BOOL; becomes TRUE if a rising edge occurs at CLK.

The output Q and an internal Boolean help variable M will remain FALSE as long as the input

variable CLK is FALSE. As soon as CLK returns TRUE, Q will first return TRUE, then M will be
set to TRUE. This means each time the function is called up, Q first will be set TRUE, then return

FALSE, followed by a rising edge in CLK.

Declaration example:

RTRIGInst : R_TRIG;

6. Libraries

 193

Example in IL:

Example in FBD:

Example in ST:

RTRIGInst(CLK:= VarBOOL1);

VarBOOL2 := RTRIGInst.Q;

F_TRIG

Provided by standard.library.

Function block detecting a falling edge.

Inputs: CLK: BOOL; incoming Boolean signal to be checked for rising edge.

Outputs: Q: BOOL; becomes TRUE if a falling edge occurs at CLK.

The output Q and an internal Boolean help variable M will remain FALSE as long as the input

variable CLK returns TRUE. As soon as CLK returns FALSE, Q will first return TRUE, then M will
be set to TRUE. This means each time the function is called up, Q first will be set TRUE, then return

FALSE, followed by a falling edge in CLK.

Declaration example:

FTRIGInst : F_TRIG ;

Example in IL:

Example in FBD:

Example in ST:

FTRIGInst(CLK:= VarBOOL1);

VarBOOL2 := FTRIGInst.Q;

Counter

CTU

Provided by standard.library.

Function block working as an incrementer.

Inputs:

6. Libraries

 194

CU: BOOL; a rising edge at this input starts the incrementing of CV.

RESET: BOOL; If TRUE, CV will be reset to 0.

PV: WORD; upper limit for the incrementing of CV.

NOTE: Datatype WORD, which is used for PV in MasterTool IEC XE, does not match the IEC
standard, which for PV defines datatype INT.

Outputs:

Q: BOOL; gets TRUE as soon as CV has reached the limit given by PV.

CV: WORD; gets counted up until it reaches PV.

Declaration example:

CTUInst: CTU;

Example in IL:

Example in FBD:

Example in ST:

CTUInst(CU := VarBOOL1, RESET := VarBOOL2 , PV := VarWORD1);

VarBOOL3 := CTUInst.Q;

VarWORD2 := CTUInst.CV;

CTD

Provided by standard.library.

Function block working as a decrementer.

Inputs:

CD : BOOL; a rising edge at this input starts the decrementing of CV.

LOAD : BOOL; If TRUE, CV will be reset to the upper limit given by PV.

PV : WORD; upper limit, that is start value for decrementing of CV.

NOTE: Datatype WORD, which is used for PV in MasterTool IEC XE, does not match the IEC
standard, which for PV defines datatype INT.

Outputs:

Q: BOOL; gets TRUE as soon as CV is 0.

CV: WORD; gets decremented by 1, starting with PV until 0 is reached.

6. Libraries

 195

Declaration example:

CTDInst : CTD ;

Example in IL:

Example in FBD:

Example in ST:

CTDInst(CD := VarBOOL1, LOAD := VarBOOL2 , PV := VarWORD1);

VarBOOL3 := CTDInst.Q;

VarWORD2 := CTDInst.CV;

CTUD

Provided by standard.library.

Function block working as incrementer and decrementer.

Inputs:

CU: BOOL; if a rising edge occurs at CU, incrementing of CV will be started.

CD: BOOL; if a rising edge occurs at CU, decrementing of CV will be started.

RESET: BOOL; If TRUE, CV will be set to 0.

LOAD : BOOL; if TRUE, CV will be set to PV.

PV : WORD; upper limit for incrementing or decrementing CV.

NOTE: Datatype WORD, which is used for PV in MasterTool IEC XE, does not match the IEC
standard, which for PV defines datatype INT.

Outputs:

QU: BOOL; returns TRUE when CV has been incremented to >= PV.

QD: BOOL; returns TRUE when CV has been decremented to 0.

CV: WORD; gets incremented or decremented.

Declaration example:

CTUDInst : CUTD;

Example in IL:

6. Libraries

 196

Example in FBD:

Example in ST:

CTUDInst(CU := VarBOOL1, CD := VarBOOL2, RESET := VarBOOL3, LOAD :=

VarBOOL4 , PV := VarWORD1);

VarBOOL5 := CTUDInst.QU;

VarBOOL6 := CTUDInst.QD;

VarINT1 := CTUDInst.CV;

Timer

TP

Provided by standard.library.

Timer function block, working as a trigger. A timer is counted up until a given limit is reached.

During counting up a "pulse" variable is TRUE, otherwise it is FALSE.

Inputs:

IN: BOOL; At a rising edge counting up the time in ET will be started;

PT: TIME; Upper limit of the time.

Outputs:

Q: BOOL; TRUE as long as the time is being counted up in ET (pulse).

ET: TIME; Current state of the time.

TP(IN, PT, Q, ET):

If IN is FALSE, Q will be FALSE and ET will be 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds in ET until its value

is equal to PT. It will then remain constant.

Q is TRUE as from IN has got TRUE and ET is less than or equal to PT. Otherwise it is FALSE.

Q returns a signal for the time period given in PT.

6. Libraries

 197

Figure 6-1. Graphic Display of the TP Time Sequence

Declaration example:

TPInst : TP;

Example in IL:

Example in FBD:

Example in ST:

TPInst(IN := VarBOOL1, PT:= T#5s);

VarBOOL2 :=TPInst.Q;

TON

Provided by standard.library.

Timer function block, implements a turn-on delay. When the input gets TRUE, first a certain time

will run through until also the output gets TRUE.

Inputs:

IN: BOOL; Rising edge starts counting up ET.

PT: TIME; Upper limit for counting up ET (delay time).

Outputs:

Q: BOOL; Gets a rising edge as soon as ET has reached the upper limit PV (delay time is over).

ET: current state of delay time.

TON(IN, PT, Q, ET):

If IN is FALSE, Q will be FALSE and ET will be 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds in ET until its value

is equal to PT. It will then remain constant.

Q is TRUE when IN is TRUE and ET is equal to PT. Otherwise it is FALSE.

6. Libraries

 198

Thus, Q has a rising edge when the time indicated in PT in milliseconds has run out.

Figure 6-2. Graphic Display of TON Behavior Over Time

Declaration example:

TONInst : TON;

Example in IL:

Example in FBD:

Example in ST:

TONInst(IN := VarBOOL1, PT:= T#5s);

TOF

Provided by standard.library.

Timer function block, implements a turn-off delay. When the input changes from TRUE to FALSE

(falling edge), first a certain time will run through until also the output gets FALSE.

Inputs:

IN: BOOL; Falling edge starts counting up ET.

PT: TIME; Upper limit for counting up ET (delay time).

Outputs:

Q: BOOL; Gets a falling edge as soon as ET has reached the upper limit PV (delay time is over).

ET: current state of delay time.

TOF(IN, PT, Q, ET):

If IN is TRUE, the outputs will be TRU respectively 0.

As soon as IN becomes FALSE, in ET the time will begin to be counted in milliseconds in ET until
its value is equal to PT. It will then remain constant.

6. Libraries

 199

Q is FALSE when IN is FALSE und ET equal PT. Otherwise it is TRUE.

Thus, Q has a falling edge when the time indicated in PT in milliseconds has run out.

Figure 6-3. Graphic Display of TOF Behavior Over Time

Declaration example:

TOFInst : TOF;

Example in IL:

Example in FBD:

Example in ST:

TOFInst(IN := VarBOOL1, PT:= T#5s);

VarBOOL2 :=TOFInst.Q;

RTC

Provided by standard.library.

Timer function block RunTime Clock, returns, starting at a given time, the current date and time.

Inputs:

EN: BOOL; At a rising edge starts counting up the time in CDT.

PDT: DATE_AND_TIME; Date and time from which the counting up should be started.

Outputs:

Q: BOOL; Is TRUE as long as CDT is counting up.

CDT: DATE_AND_TIME; Current state of counted date and time.

VarBOOL2:=RTC(EN, PDT, Q, CDT):

When EN is FALSE, the output variables Q und CDT are FALSE respectively DT#1970-01-01-

00:00:00.

6. Libraries

 200

As soon as EN becomes TRUE (rising edge), the time given by PDT is set, is counted up in seconds

and returned in CDT as long as EN is TRUE. As soon as EN is reset to FALSE, CDT is reset to the

initial value DT#1970-01-01-00:00:00.

Example in IL:

Example in FBD:

Example in ST:

RTC(EN:=VarBOOL1, PDT:=DT#2006-03-30-14:00:00, Q=>VarBOOL2,

CDT=>VarTimeCur);

The UTIL.library Library

This library contains an additional collection of various blocks which can be used for BCD

conversion, bit/byte functions, mathematical auxiliary functions, as controller, signal generators,

function manipulators and for analogue value processing.

BCD Conversion

Provided by util.library.

A byte in the BCD format contains integers between 0 and 99. Four bits are used for each decimal
place. The ten decimal place is stored in the bits 4-7. Thus the BCD format is similar to the

hexadecimal presentation, with the simple difference that only values between 0 and 99 can be stored

in a BCD byte, whereas a hexadecimal byte reaches from 0 to FF.

Example:

The integer “51” should be converted to BCD format. Five in binary is “0101”, one in binary is

“0001”, which makes the BCD byte “01010001”, which corresponds to the value $51=81.

BCD_TO _INT

Provided by util.library.

This function converts a byte in BCD format into an INT value.

The input value of the function is type BYTE and the output is type INT.

Where a byte should be converted which is not in the BCD format the output is “-1”.

Examples in ST:

i:=BCD_TO_INT(73); (* Result is 49 *)

k:=BCD_TO_INT(151); (* Result is 97 *)

l:=BCD_TO_INT(15); (* Output -1, because it is not in BCD format *)

INT_TO_BCD

Provided by util.library.

6. Libraries

 201

This function converts an INTEGER value into a byte in BCD format.

The input value of the function is type INT, the output is type BYTE.

The number “255” will be outputted where an INTEGER value should be converted which cannot be
converted into a BCD byte.

Examples in ST:

i:=INT_TO_BCD(49); (* Result is 73 *)

k:=BCD_TO_INT(97); (* Result is 151 *)

l:=BCD_TO_INT(100); (* Error! Output: 255 *)

BIT/BYTE Functions

Extract

Provided by util.library.

Inputs to this function are a DWORD X, as well as a BYTE N. The output is a BOOL value, which

contains the content of the Nth bit of the input X, whereby the function begins to count from the zero

bit.

Examples in ST:

FLAG:=EXTRACT(X:=81, N:=4); (* Result : TRUE, because 81 is binary

1010001, so the 4th bit is 1 *)

FLAG:=EXTRACT(X:=33, N:=0); (* Result : TRUE, because 33 is binary 100001,

so the bit '0' is 1 *)

Pack

Provided by util.library.

This function is capable of delivering back eight input bits B0, B1, ..., B7 from type BOOL as a
BYTE.

The function block UNPACK is closely related to this function. See Unpack for details and

examples.

Putbit

Provided by util.library.

The input to this function consists of a DWORD X, a BYTE N and a Boolean value B.

PUTBIT sets the Nth bit from X on the value B, whereby it starts counting from the zero bit.

Example in ST:

A:=38; (* Binary 100110 *)

B:=PUTBIT(A,4,TRUE); (* Result: 54 = 2#110110 *)

C:=PUTBIT(A,1,FALSE); (* Result: 36 = 2#100100 *)

Unpack

Provided by util.library.

UNPACK converts the input B from type BYTE into 8 output variables B0,...,B7 of the type BOOL,

and this is the opposite to PACK.

6. Libraries

 202

Figure 6-4. Example in FBD, Output

Mathematical Auxiliary Function

Derivative

Provided by util.library.

This function block approximately determines the local derivation. The function value is delivered as

a REAL variable by using IN.

TM contains the time which has passed in msec in a DWORD.

By an input TRUE of RESET the function block can be restarted.

The output OUT is of the type REAL.

In order to obtain the best possible result, DERIVATIVE approximates using the last four values, in
order to hold errors which are produced by inaccuracies in the input parameters as low as possible.

Example in FBD:

6. Libraries

 203

Figure 6-5. FB DERIVATIVE Behavior

Integral

Provided by util.library.

This function block approximately determines the integral of the function.

Analogous to DERIVATIVE the function value is delivered as a REAL variable by using IN.

TM contains the time which has passed in msec in a DWORD.

By TRUE in input RESET the function block can be restarted.

Output OUT is of type REAL.

The integral is approximated by two step functions. The average of these is delivered as the

approximated integral.

Example in FBD:

6. Libraries

 204

Figure 6-6. FB INTEGRAL Behavior

Lin_TRAFO

This function block (util.library) transforms a REAL-value, which lies in a value range defined by a
lower and upper limit value, to a REAL-value which lies correspondingly in another range also

defined by a lower and upper limit. The following equation is basis of the conversion: “(IN -

IN_MIN) : (IN_MAX - IN) = (OUT - OUT_MIN) : (OUT_MAX - OUT)”.

Example in FBD:

Input Variables

Variable Data type Description

IN REAL Input value

IN_MIN REAL Lower limit of input value range

IN_MAX REAL Upper limit of input value range

OUT_MIN REAL Lower limit of output value range

OUT_MAX REAL Upper limit of output value range

Table 6-1. Input Variables (LIN_TRAFO)

6. Libraries

 205

Output Variables

Variable Data type Description

OUT REAL Output value

ERROR BOOL Error occurred: TRUE, if IN_MIN = IN_MAX, or if IN is outside

of the specified input value range.

Table 6-2. Output Variables (LIN_TRAFO)

Example:

A temperature sensor delivers information in a 0 to 10 V scale. When this sensor is connected to a
NX6000 analog input channel, the minimum value of the scale is 0 and the maximum is 30,000.

These values can be edited in the NX6000 Input Parameters tab, where 0 to 30,000 is the standard

scale. If the user wishes to convert these values to a Celsius degrees temperature scale, it’s only
necessary to change the minimum and maximum value. E.g. in a hypothetical sensor where 0 V is 0

°C and 10 V is 100 °C, the module setup could be 0 to minimum value and 100 to maximum value.

In this scenario, the INT type converted variable would have a 1 °C resolution.

It is possible to convert the read sensor INT value to REAL type without accuracy loss. First an INT
to REAL conversion takes place using the INT_TO_REAL function. The result of this conversion

must then be passed to LIN_TRAFO (through the IN input). The input limites are defined through

the block inputs IN_MIN=0 and IN_MAX=30000. The output value range (°C) is defined by
OUT_MIN=0 e OUT_MAX=100. The converted output will be in Celcius degrees (OUT output)

without accuracy loss since the analog input.

Figure 6-7. FBD Example of LIN_TRAFO block

Figure 6-7 presents an analog voltage input conversion example to a REAL type in a 0 a 100 °C

scale.

For instance, a 4.67 Vdc input would result in 14,000, and consequently a 46.67 °C in the REAL type

output variable.

STATISTICS-INT

Provided by util.library.

This function block calculates some standard statistical values.

The input IN is of the type INT. All values are initialized anew when the boolean input RESET is

TRUE.

The output MN contains the minimum, MX of the maximum value from IN. AVG describes the
average, that is the expected value of IN. All three outputs are of the type INT.

Example of STATISTICS-INT in FBD:

6. Libraries

 206

STATISTICS_REAL

Provided by util.library.

This function block corresponds to STATISTICS_INT, except that the input IN is of the type REAL

like the outputs MN, MX, AVG.

VARIANCE

Provided by util.library.

VARIANCE calculates the variance of the entered values.

The input IN is of the type REAL, RESET is of the type BOOL and the output OUT is again of the
type REAL.

This block calculates the variance of the inputted values. VARIANCE can be reset with

RESET=TRUE.

The standard deviation can easily be calculated as the square root of the VARIANCE.

Controllers

PD

The library util.library provides the PD controller function block.

Example of PD in FBD:

Inputs of the Function Block

Variable Datatype Description

ACTUAL REAL Current value of the controlled variable

SET_POINT REAL Desired value, command variable

KP REAL Proportionality coefficient, unity gain of the P-part

TV REAL Derivative action time, unity gain of the D-part in seconds, for

example "0.5" for 500 msec

Y_MANUAL REAL Defines output value Y in case of MANUAL = TRUE

Y_OFFSET REAL Offset for the manipulated variable Y

6. Libraries

 207

Y_MIN,

Y_MAX

REAL Lower/upper limit for the manipulated variable Y. If Y exceeds these

limits, output LIMITS_ACTIVE will be set to TRUE and Y will be kept
within the prescribed range. This control will only work if

Y_MIN<Y_MAX.

MANUAL BOOL If TRUE, manual operation will be active, that is the manipulated

value will be defined by Y_MANUAL.

RESET BOOL TRUE resets the controller. During reinitialization Y = Y_OFFSET

Table 6-3. Input Variables (PD)

Outputs of the Function Block

Variable Datatype Description

Y REAL Manipulated value, calculated by the function block

LIMITS_ACTIVE BOOL TRUE indicates that Y has exceeded the given limits (Y_MIN,

Y_MAX).

Table 6-4. Output Variables (PD)

Y_OFFSET, Y_MIN und Y_MAX are used for the transformation of the manipulated variable within

a prescribed range.

MANUAL can be used to switch on and off manual operation. RESET serves to reset the controller.

In normal operation (MANUAL, RESET and LIMITS_ACTIVE = FALSE) the controller calculates

the controller error (“e”) as difference SET_POINT – ACTUAL, generates the derivation with
respect to time de/ dt and stores these values internally.

The output, that is the manipulated variable Y, is calculated as follows: Y = KP × (D + TV dD/dt) +

Y_OFFSET onde D=SET_POINT-ACTUAL.

So besides the P-part also the current change of the controller error (D-part) influences the
manipulated variable.

Additionally Y is limited on a range prescribed by Y_MIN and Y_MAX. If Y exceeds these limits,

LIMITS_ACTIVE will get TRUE. If no limitation of the manipulated variable is desired, Y_MIN
and Y_MAX have to be set to 0.

As long as MANUAL=TRUE, Y_MANUAL will be written to Y.

A P-controller can be easily created by setting TV=0.

PID

The library util.library provides the following PID controller function block.

Example of PID in FBD:

6. Libraries

 208

Unlike the PD controller, this function block contains a further REAL input TN for the readjusting
time in sec (for example “0.5” for 500 msec).

Inputs of the Function Block

Variable Datatype Description

ACTUAL REAL Current value of the controlled variable

SET_POINT REAL Desired value (command variable)

KP REAL Proportionality coefficient, unity gain of the P-part

TN REAL Reset time, reciprocal unity gain of the I-part; given in seconds,

for example "0.5" for 500 msec

TV REAL Derivative action time, unity gain of the D-part in seconds, for

example "0.5" for 500 msec

Y_MANUAL REAL Defines output value Y in case of MANUAL = TRUE

Y_OFFSET REAL Offset for the manipulated variable Y

Y_MIN, Y_MAX REAL Lower/upper limit for the manipulated variable Y. If Y exceeds

these limits, output LIMITS_ACTIVE will be set to TRUE and Y
will be kept within the prescribed range. This control will only

work if Y_MIN<Y_MAX.

MANUAL BOOL If TRUE, manual operation will be active, that is the manipulated

value will be defined by Y_MANUAL

RESET BOOL TRUE resets the controller. During reinitialization, Y =
Y_OFFSET

Table 6-5. Input Variables (PID)

Outputs of the Function Block

Variable Datatype Description

Y REAL Manipulated value, calculated by the function block

LIMITS_ACTIVE BOOL TRUE indicates that Y has exceeded the given limits (Y_MIN,

Y_MAX)

OVERFLOW BOOL TRUE indicates an overflow

Table 6-6. Output Variables (PID)

Y_OFFSET, Y_MIN und Y_MAX serve for transformation of the manipulated variable within a

prescribed range.

MANUAL can be used to switch to manual operation; RESET can be used to re-initialize the
controller.

In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calculates

the controller error (“e”) as difference from SET_POINT – ACTUAL, generates the derivation with
respect to time de/dt and stores these values internally.

6. Libraries

 209

The output, that is the manipulated variable Y unlike the PD controller contains an additional integral

part and is calculated as follows: Y = KP × (D + 1/TN + TV dD/dt) + Y_OFFSET.

So besides the P-part also the current change of the controller error and the history of the controller
error (I-part) influence the manipulated variable.

The PID controller can be easily converted to a PI-controller by setting TV=0.

Because of the additional integral part, an overflow can come about by incorrect parameterization of
the controller, if the integral of the error D becomes too great. Therefore for the sake of safety a

Boolean output called OVERFLOW is present, which in this case would have the value TRUE. This

only will happen if the control system is instable due to incorrect parameterization. At the same time,

the controller will be suspended and will only be activated again by re-initialization.

NOTE: As long as the limitation for the manipulated variable (Y_MIN and Y_MAX) is active, the
integral part will be adapted, like if the history of the input values had automatically effected the
limited output value. If this behavior is not wanted, the following workaround is possible: Switch off
the limitation at the PID controller (Y_MIN>=Y_MAX) and instead apply the LIMIT operator (IEC
standard) on output value Y.

NOTE: Altus recommends using the PID function block available in the library NextoPID and
described herein. The PID function block of the library NextoPID has advanced parameters that
allow a better fit of the control. The two libraries cannot be used simultaneously.

PID_FIXCYCLE

Provided by util.library.

This function block corresponds to a PID controller with the exception that the cycle time is

measured automatically by an internal function, but is defined by input cycle (in seconds).

Example of PID_FIXCYCLE in FBD:

Signal Generators

BLINK

Provided by util.library.

The function block BLINK generates a pulsating signal. The input consists of ENABLE of the type

BOOL, as well as TIMELOW and TIMEHIGH of the type TIME. The output OUT is of the type

BOOL.

If ENABLE is set to TRUE, BLINK begins to set the output for the time period TIMEHIGH to

TRUE and afterwards to set it for the time period TIMELOW to FALSE.

6. Libraries

 210

When ENABLE is reset to FALSE, output OUT will not be changed, that is no further pulse will be

generated. If you explicitly also want to get OUT FALSE when ENABLE is reset to FALSE, you

might use “OUT AND ENABLE” (that is adding an AND box with parameter ENABLE) at the
output.

Example of BLINK in CFC:

Figure 6-8. Output Results of Block BLINK

FREQ_MEASURE

Provided by util.library.

This function block measures the (average) frequency (Hz) of a boolean input signal. You can

specify over how many periods it should be averaged. A period is the time between two rising edges
of the input signal.

Example of FREQ_MEASURE in FBD:

Input Variables

Variable Data Type Description

IN BOOL Input signal

PERIODS INT Number of periods, that is the time intervals between the rising

edges, over which the average frequency of the input signal
should be calculated: 1 to 10.

RESET BOOL Reset of all parameters to 0.

Table 6-7. Input Variables (FREQ_MEASURE)

6. Libraries

 211

Output Variables

Variable Data Type Description

OUT REAL Resulting frequency in [Hz]

VALID BOOL FALSE until the first measure has been finished, or if the period

> 3*OUT (indicating something wrong with the inputs).

Table 6-8. Output Variables (FREQ_MEASURE)

GEN

Provided by util.library.

The function generator generates typical periodic functions.

Example of GEN in CFC:

MODE describes the function which should be generated, whereby the enumeration values

TRIANGLE and TRIANGLE_POS deliver two triangular functions, SAWTOOTH_RISE an

ascending, SAWTOOTH_FALL a descending sawtooth, RECTANGLE a rectangular signal and
SINE and COSINE the sine and cosine:

Figure 6-9. Triangles

6. Libraries

 212

Figure 6-10. Sawtooth Fall

Figure 6-11. Sine/Cosine

6. Libraries

 213

Figure 6-12. Rectangle

BASE defines whether the cycle period is really related to a defined time (BASE=TRUE) or whether

it is related to a particular number of cycles, which means the number of calls of function block
(BASE=FALSE).

PERIOD or CYCLES defines the corresponding cycle period.

AMPLITUDE defines, in a trivial way, the amplitude of the function to be generated.

The function generator is again set to 0 as soon as RESET=TRUE.

Function Manipulators

CHARCURVE

Provided by util.library.

This function block serves to represent values, piece by piece, on a linear function.

Example of CHARCURVE in FBD:

IN of type INT is fed with the value to be manipulated.

N of type BYTE designates the number of points which defines the presentation function.

P of type ARRAY P[0..10] OF POINT, which is a structure based on two INT values (X and Y),

determines this characteristic curve.

OUT of type INT contains the manipulated value.

ERR of type BYTE indicates an error.

The points P[0]..P[N-1] in the ARRAY must be sorted according to their X values, otherwise ERR

receives the value 1. If the input IN is not between P[0].X and P[N-1].X, ERR=2 and OUT contains

the corresponding limiting value P[0]. Y or P[N-1].Y. If N lies outside of the allowed values which
are between 2 and 11, then ERR=4.

Example in ST:

6. Libraries

 214

First of all ARRAY P must be defined in the header:

VAR

...

CHARACTERISTIC_LINE:CHARCURVE;

KL:ARRAY[0..10] OF POINT:=(X:=0,Y:=0),(X:=250,Y:=50),

(X:=500,Y:=150),(X:=750,Y:=400),7((X:=1000,Y:=1000));

COUNTER:INT;

...

END_VAR

Then we supply CHARCURVE with for example a constantly increasing value:

COUNTER:=COUNTER+10;

CHARACTERISTIC_LINE(IN:=COUNTER,N:=5,P:=KL);

Figure 6-13. Illustration of the Resulting Curves

RAMP_INT

Provided by util.library.

RAMP_INT serves to limit the ascendance or descendance of the function being fed.

The input consists on the one hand out of three INT values: IN, the function input, and ASCEND and
DESCEND, the maximum increase or decrease for a given time interval, which is defined by

TIMEBASE of the type TIME. Setting RESET to TRUE causes RAMP_INT to be initialized anew.

The output OUT of the type INT contains the ascend and descend limited function value.

When TIMEBASE is set to t#0s, ASCEND and DESCEND are not related to the time interval, but

remain the same.

Example of RAMP_INT in CFC:

6. Libraries

 215

Figure 6-14. RAMP_INT Behavior

RAMP_REAL

Provided by util.library.

RAMP_REAL functions in the same way as RAMP_INT, with the simple difference that the inputs

IN, ASCEND, DESCEND and the output OUT are of the type REAL.

Analogue Value Processing

HYSTERESIS

Provided by util.library.

Example of HYSTERESIS in FBD:

The input to this function block consists of three INT values IN, HIGH and LOW. The output OUT is

of type BOOL.

If IN goes below the limiting value LOW, OUT becomes TRUE. If IN exceeds the upper limit

HIGH, FALSE is output.

6. Libraries

 216

If IN falls below limit LOW, OUT will get TRUE. Not before in the further run IN exceeds the upper

limit, FALSE will be output again, until IN once more falls below LOW and thus OUT again gets

TRUE.

Figure 6-15. Graphical Comparison of Hysteresis.IN and Hysteresis.OUT

LIMITALARM

Provided by util.library.

This function block specifies, whether the input value is within a set range and which limits it has

violated if it has done so.

The input values IN, HIGH and LOW are each of the type INT, while the outputs O, U and IL are of
the type BOOL.

If the upper limit HIGH is exceeded by IN, O becomes TRUE, and when IN is below LOW, U

becomes TRUE. IL is TRUE if IN lies between LOW and HIGH.

Example of LIMITALARM in FBD:

NextoPID.library Library

PID

The PID function block is used to control a real process. The block is present in the library

NextoPID, which must be added to project.

From a process variable (PV) and setpoint (SP) the functional block calculates the manipulated
variable (MV) for the controlled process. This is calculated periodically considering the proportional,

integral and derivative factors programmed. This is a control algorithm PID where the proportional

gain is the gain of the controller, applied to both the error as to the portions of the integral and

derivative of the controller.

6. Libraries

 217

The functional block can be represented by the basic diagram of Figure 6-16.

Figure 6-16. Diagram Basic PID

The Figure 6-17 shows the block diagram of a detailed PID loop, as the Nexto CPU execution.

Figure 6-17. Diagram Full PID

Figure 6-18 shows a block diagram of an example of a PID FB controlling a real process. They are

also showed auxiliare functions that help and the user must put in the application ("MV to AO

Conversion" and "AI to PV Conversion").

6. Libraries

 218

Figure 6-18. PID FB Controlling a Real Process

The diagram shows only the main parameters of the PID block. The analog output (AO) is the
variable written in analog output module. The analog input (AI) is the variable read from an analog

input module.

The AI and AO variables are usually INT type. For example, some input and output analog modules
typically operate in the range between 0 and 30000, where 0 corresponds to 4 mA and 30000

corresponds to 20 mA.

In the other hand, the MV and PV parameters of the PID are REAL type. The units and the operating
range can be set in the most appropriate. The following examples for PID parameters conversion can

be used.

Consider the following examples:

 MV with the same operating range of AO and is not prepared value (eg: 0 .. 30000)

 MV percentage (eg: 0% = control valve fully closed, 100% = control valve fully open)

In each example, the need to observe conversion to implement:

 AO: = REAL_TO_INT (MV);

 AO: = REAL_TO_INT (MV * 30000/100);

NOTE: there are some PID parameters (described below) which impose maximum and minimum
values for MV. They are called MaxMV and MinMV respectively. Substituting MV in expressions
on the previous examples by MaxMV and MinMV must generate values in the AO operation range
(eg: 0 .. 30000). It is necessary to check this to avoid overflow problems.

Example of PID block in FBD:

6. Libraries

 219

Input parameters Type Description

SP REAL

Setpoint.

Unit and range must be the same as the PV, because the two
variables can be compared.

PV REAL

Process variable.

Unit and range must be the same as the SP, because the two
variables can be compared.

Gp REAL
Proportional gain used to calculate the proportional action of the PID

block.

Td REAL
Derivative Time, in seconds, used to calculate the derivative action
of the PID block.

Ti REAL
Integral, Time, in seconds, used to calculate the integral action of

the PID block.

BIAS REAL Compensation added to the manipulated variable.

ManualMV REAL
Value attributed to the manipulated variable, when using the manual

mode.

MaxVarMV REAL
Maximum variation in the manipulated variable between the current
and previous cycle. If zero or negative, the PID block has no limit of

MV variation.

MaxMV REAL
Maximum value of the manipulated variable. If the calculated value

is greater than the configured value, the MV is equal to MaxMV.

MinMV REAL
Minimum value of the manipulated variable. If the calculated value is

less than the configured value, the MV is equal to MinMV.

DeadBand REAL
Dead time. Minimum amount of error that will cause the correction
of MV in automatic mode, i.e., small errors (less than deadband) will

not cause changes in the manipulated variable.

MaxPV REAL

Maximum value of the process variable. If PV value is larger than

the configured value PID calculation will stop and will generate an
error code output.

MinPV REAL

Minimum value of the process variable.

If PV value is smaller than the configured value PID calculation will
stop and will generate an error code output.

SampleTime REAL
Sampling time. Defines the calling period of PID block, in seconds,

ranging from 0.001 s to 1000 s. This parameter is disregarded if the
MeasureST is true.

EnableP BOOL
When true, enables the proportional action of the PID block. If false,
the proportional action is set to zero.

EnableD BOOL When true, enables the derivative action of the PID block. If false,

6. Libraries

 220

the derivative action is set to zero.

EnableI BOOL
When true, enables the integral action of the PID block. If false, the

integral action is set to zero.

DerivPV BOOL

When true, the derivative action is calculated in the process

variable, being different from zero only when PV is changed. If false,
the derivative action is calculated in error, being dependent on the

variables SP and PV.

Manual BOOL

When true, enables the manual mode. If false, enables the

automatic mode. The control mode of the PID block affects the way
the MV and the action integral is calculated.

Direct BOOL

When true, you select the direct control, so that MV is considered in

the response to be included in the PV. If false, it selects the reverse
control. In this case MV is not considered in the response to be
included in the PV.

MeasureST BOOL
When true, the sampling time is measured. If false, the sampling

time is entered by the user in the variable SampleTime.

Restart BOOL

When true, resets PID block, initializing all variables. It can also be

used to clear the integral and derivative action, and error codes in
the block output.

IntegralAction REAL Stores the integral action, which is deleted in error state.

Table 6-9. Input Parameters

Output parameters Type Description

MV REAL Manipulated variable.

EffST REAL
Effective time of sampling, in seconds, used for calculating the

derivative action and rate limit of MV.

Eff3ST REAL
Effective time sampling of the last three cycles, in seconds, used for
calculating the derivative action.

MaxEffST REAL
Maximum value of the effective time of sampling, in seconds, since

startup of the PID block.

MinEffST REAL
Minimum value of the effective time of sampling, in seconds, since

startup of the PID block.

ErrorCode UINT

Error code displayed by the PID block. To remove it, just solve the

problem and restart the block via the variable.

Restart. In the following the error description:

0: without error

1: MaxMV < MinMV

2: MaxPV < MinPV

3: PV > MaxPV

4: PV < MinPV

5: Ti < 0,001 s (with integral action enabled)

6: Td < 0 s (with derivative action enabled)

7: Gp ≤ 0

8: MaxVarMV < 0

9: DeadBand < 0

10: SampleTime < 0,001 s or SampleTime > 1000 s (with
MeasureST = false)

Table 6-10. Output Parameters

PID_REAL

The function block PID_REAL implements an algorithm similar to this library’s PID block;

However, this block tests input values PV, SP and MV to make sure they are within the specified

bounds. If they are out of bounds, the algorithm keeps on executing, but a specific ErrorCode output
is generated. Also, when MV is saturated, either Overflow or Underflow outputs will turn TRUE.

This function block doesn’t have the VAR_IN_OUT IntegralAction variable.

PID_REAL example in FBD:

6. Libraries

 221

Output parameters Type Description

SP REAL

Setpoint.

Unit and range must be the same as the PV, because the two
variables can be compared.

PV REAL

Process variable.

Unit and range must be the same as the SP, because the two
variables can be compared.

Gp REAL
Proportional gain used to calculate the proportional action of the

PID block.

Ti REAL
Derivative Time, in seconds, used to calculate the derivative

action of the PID block.

Td REAL
Integral, Time, in seconds, used to calculate the integral action

of the PID block.

BIAS REAL Compensation added to the manipulated variable.

ManualMV REAL
Value attributed to the manipulated variable, when using the
manual mode.

MaxVarMV REAL
Maximum variation in the manipulated variable between the

current and previous cycle. If zero or negative, the PID block
has no limit of MV variation.

MaxMV REAL
Maximum value of the manipulated variable. If the calculated
value is greater than the configured value, the MV is equal to

MaxMV.

MinMV REAL

Minimum value of the manipulated variable. If the calculated

value is less than the configured value, the MV is equal to
MinMV.

DeadBand REAL
Dead time. Minimum amount of error that will cause the
correction of MV in automatic mode, i.e., small errors (less than

deadband) will not cause changes in the manipulated variable.

MaxPV REAL

Maximum value of the process variable. If PV value is larger

than the configured value PID calculation will stop and will
generate an error code output.

MinPV REAL

Minimum value of the process variable.

If PV value is smaller than the configured value PID calculation
will stop and will generate an error code output.

SampleTime REAL
Sampling time. Defines the calling period of PID block, in

seconds, ranging from 0.001 s to 1000 s. This parameter is
disregarded if the MeasureST is true.

EnableP BOOL
When true, enables the proportional action of the PID block. If
false, the proportional action is set to zero.

EnableD BOOL
When true, enables the derivative action of the PID block. If

false, the derivative action is set to zero.

6. Libraries

 222

EnableI BOOL
When true, enables the integral action of the PID block. If false,

the integral action is set to zero.

DerivPV BOOL

When true, the derivative action is calculated in the process
variable, being different from zero only when PV is changed. If

false, the derivative action is calculated in error, being
dependent on the variables SP and PV.

Manual BOOL
When true, enables the manual mode. If false, enables the
automatic mode. The control mode of the PID block affects the

way the MV and the action integral is calculated.

Direct BOOL

When true, you select the direct control, so that MV is

considered in the response to be included in the PV. If false, it
selects the reverse control. In this case MV is not considered in

the response to be included in the PV.

MeasureST BOOL
When true, the sampling time is measured. If false, the

sampling time is entered by the user in the variable
SampleTime.

Restart BOOL
When true, resets PID block, initializing all variables. It can also
be used to clear the integral and derivative action, and error

codes in the block output.

Table 6-11. Input Parameters

Output parameters Type Description

MV REAL Manipulated variable.

Overflow BOOL
If the algorithm calculates an MV value larger than MaxMV, then

MV = MaxMV and this output will be TRUE.

Undeflow BOOL
If the algorithm calculates an MV value smaller than MinMV,

then MV = MinMV and this output will be TRUE.

EffST REAL
Effective time of sampling, in seconds, used for calculating the
derivative action and rate limit of MV.

Eff3ST REAL
Effective time sampling of the last three cycles, in seconds,
used for calculating the derivative action.

MaxEffST REAL
Maximum value of the effective time of sampling, in seconds,

since startup of the PID block.

MinEffST REAL
Minimum value of the effective time of sampling, in seconds,

since startup of the PID block.

ErrorCode UINT

Error code displayed by the PID block. To remove it, just solve
the problem and restart the block via the variable.

Restart. In the following the error description:

0: without error

1: MaxMV < MinMV

2: MaxPV < MinPV

3: PV > MaxPV

4: PV < MinPV

5: Ti < 0,001 s (with integral action enabled)

6: Td < 0 s (with derivative action enabled)

7: Gp ≤ 0

8: MaxVarMV < 0

9: DeadBand < 0

10: SampleTime < 0,001 s or SampleTime > 1000 s (with

MeasureST = false)

Table 6-12. Output Parameters

PID_INT

The function block PID_INT is functionally identical to PID_REAL, but the input variables SP, PV,

BIAS, ManualMV, MaxVarMV, MaxMV, MinMV, DeadBand, MaxPV and MinPV and the output

variable MV are INT type. This difference is relevant because it allows the direct connection of

analog inputs and outputs directly in the inputs and outputs of the block, without any type conversion
required.

Example of PID_INT in FBD:

6. Libraries

 223

Output parameters Type Description

SP INT

Setpoint.

Unit and range must be the same as the PV, because the two
variables can be compared.

PV INT

Process variable.

Unit and range must be the same as the SP, because the two
variables can be compared.

Gp INT
Proportional gain used to calculate the proportional action of the
PID block.

Ti REAL
Derivative Time, in seconds, used to calculate the derivative

action of the PID block.

Td REAL
Integral, Time, in seconds, used to calculate the integral action

of the PID block.

BIAS INT Compensation added to the manipulated variable.

ManualMV INT
Value attributed to the manipulated variable, when using the

manual mode.

MaxVarMV INT
Maximum variation in the manipulated variable between the
current and previous cycle. If zero or negative, the PID block

has no limit of MV variation.

MaxMV INT

Maximum value of the manipulated variable. If the calculated

value is greater than the configured value, the MV is equal to
MaxMV.

MinMV INT
Minimum value of the manipulated variable. If the calculated

value is less than the configured value, the MV is equal to
MinMV.

DeadBand INT
Dead time. Minimum amount of error that will cause the
correction of MV in automatic mode, i.e., small errors (less than

deadband) will not cause changes in the manipulated variable.

MaxPV INT

Maximum value of the process variable. If PV value is larger

than the configured value PID calculation will stop and will
generate an error code output.

MinPV INT

Minimum value of the process variable.

If PV value is smaller than the configured value PID calculation
will stop and will generate an error code output.

SampleTime REAL
Sampling time. Defines the calling period of PID block, in
seconds, ranging from 0.001 s to 1000 s. This parameter is

disregarded if the MeasureST is true.

EnableP BOOL
When true, enables the proportional action of the PID block. If

false, the proportional action is set to zero.

EnableD BOOL
When true, enables the derivative action of the PID block. If
false, the derivative action is set to zero.

6. Libraries

 224

EnableI BOOL
When true, enables the integral action of the PID block. If false,

the integral action is set to zero.

DerivPV BOOL

When true, the derivative action is calculated in the process
variable, being different from zero only when PV is changed. If

false, the derivative action is calculated in error, being
dependent on the variables SP and PV.

Manual BOOL
When true, enables the manual mode. If false, enables the
automatic mode. The control mode of the PID block affects the

way the MV and the action integral is calculated.

Direct BOOL

When true, you select the direct control, so that MV is

considered in the response to be included in the PV. If false, it
selects the reverse control. In this case MV is not considered in

the response to be included in the PV.

MeasureST BOOL
When true, the sampling time is measured. If false, the

sampling time is entered by the user in the variable
SampleTime.

Restart BOOL
When true, resets PID block, initializing all variables. It can also
be used to clear the integral and derivative action, and error

codes in the block output.

Table 6-13. Input Parameters

Output parameters Type Description

MV INT Manipulated variable.

Overflow BOOL
If the algorithm calculates an MV value larger than MaxMV, then

MV = MaxMV and this output will be TRUE.

Undeflow BOOL
If the algorithm calculates an MV value smaller than MinMV,

then MV = MinMV and this output will be TRUE.

EffST REAL
Effective time of sampling, in seconds, used for calculating the
derivative action and rate limit of MV.

Eff3ST REAL
Effective time sampling of the last three cycles, in seconds,
used for calculating the derivative action.

MaxEffST REAL
Maximum value of the effective time of sampling, in seconds,

since startup of the PID block.

MinEffST REAL
Minimum value of the effective time of sampling, in seconds,

since startup of the PID block.

ErrorCode UINT

Error code displayed by the PID block. To remove it, just solve
the problem and restart the block via the variable.

Restart. In the following the error description:

0: without error

1: MaxMV < MinMV

2: MaxPV < MinPV

3: PV > MaxPV

4: PV < MinPV

5: Ti < 0,001 s (with integral action enabled)

6: Td < 0 s (with derivative action enabled)

7: Gp ≤ 0

8: MaxVarMV < 0

9: DeadBand < 0

10: SampleTime < 0,001 s or SampleTime > 1000 s (with

MeasureST = false)

Table 6-14. Output Parameters

Application Notes

Selection of Sample Time

The efficiency of the digital controller is directly related to the sample interval used. As this interval

decreases, the result of the digital controller is close to the result of an analog controller. It is advised

to use a sample time of the order of one tenth of the time constant of the system, that is: TA = T / 10,
where TA is the sample time used and T is the time constant of the system.

6. Libraries

 225

Example: The time constant of a first order system can be obtained from its response graph of the

manipulated variable (MV) to one step in the setpoint SP with open loop control (PID disabled or

mode manual), according the Figure 6-19.

Figure 6-19. Obtaining the Time Constant

Figure 6-19 shows the obtaining of the time constant of the system using two different modes. The

most common is taken as the system time constant the time required for the system to reach 63.212%

of the final value. Another way is to plot the first derivative of the step response curve, the time
constant is the one where this line crosses the final value of the system response.

Once the time constant is defined, you only need to define the sample interval as about one tenth of

this value.

It is important to remember that on Nexto series the input and output update occurs on the same order

of time of one cycle of the PLC. Whenever the PLC cycle time is longer than the sample time it is

advised to use the functions REFRESH_INPUT and REFRESH_OUTPUT.

Feedforward/Bias

Through the memory operand used to feedforward/bias is possible to inject some system variable in

the controller output and/or apply a displacement on it.

The objective of the feedforward is to measure the main disturbs of the process and calculate the
necessary change in the manipulated variable to compensate it before it cause changes on the process

variable.

Can be mentioned as example, a system where the variable to be controlled is the temperature of a
hot mixture. At some stage of the process is necessary to pour cold water in this mixture. Without

feedforward, would be necessary to wait until the cool water changes the state of the mixture and

then the controller generates the corrective action. Using feedforward, a value associated to the

temperature of cool water would be injected on the controller output, making it takes corrective
action before the cool water starts changing the state of the hot mixture, improving the controller

response.

The bias is used whenever it is desired to apply some displacement on the controller output.

6. Libraries

 226

Cascade Control

Probably the cascade control is one of the most advanced control techniques used in practice. It is

composed by at least two control loops. The Figure 5-20 shows a cascade controller with two loops.

Figure 6-20. Cascade Control with Two Loops

The external loop is called master controller and internal loop is the slave controller. The master

controller has its set point fixed and its output provides the set point of the slave controller (MV 1).
The manipulated variable of the slave controller (MV 2) operate on the process 2 which will operate

on the process 1, closing the loop of the master controller.

This type of controller is applied, for example, on the temperature control by the steam injection.
Besides the temperature variation, that must be controlled, the system is subject to pressure variations

on the steam line. It is therefore desirable a slave flow controller acting as in function of pressure

variations and a master controller to manipulate the slave reference then controlling the process

temperature. This example can be represented graphically according the Figure 6-21.

Figure 6-21. Example of Cascade Control Applied

If only a temperature controller were used acting directly on the steam valve, there would not be as to

compensate eventual pressure variations on the steam line.

There are three main advantages to use cascade controllers:

 Any disturb that affects the slave controller is detected and compensated by this one before

affecting the variable manipulated by the master controller

 Increased controllability of the system. In case of temperature control by steam injection, the

system response is improved by the flow controller increasing the controllability of the main loop

 Non-linearities of an internal loop are manipulated into this loop and not perceived by the

external loop. In the previous example, the pressure variations are compensated by the slave

controller and the master controller notices only a linear relationship between the valve and the

temperature

Important Considerations
To use cascade controllers the following precautions should be taken:

 As the slave controller’s setpoint is manipulated as the master controllers output, sudden

variation can occur on the slave controller error. If the slave controllers are with the derivative

action acting in function of the error, derivative actions will be generated with big values.
Therefore it is advisable to use the slave controllers with derivative action in function of the

measured variable

 Slave controller must be fast enough to eliminate the disturbs of its loop before they affect the

loop of the master controller

6. Libraries

 227

Suggestions for Adjustments of the PID Controller

Two methods for the determination of the constants of the PID controller are following presented.

The first method consists in determining the constants in function of the oscillation period and of the
critical gain, while the second one determines the controller constants in function of the time constant

(T), of the dead time (Tm) and of the statistics gain of the system (K). For further details we

recommend reading the referenced literature.

WARNING:

Altus Sistemas de Automação S.A. is not responsible for any damage caused by configuration errors

of the constants of the controller or parameterization. It is recommended that suitably qualified

person to execute this task.

Determination of Controller Constants Through the Period and the Critical Gain
This method generates a damped response which damping rate is equal to one quarter. That is, after

tuning a loop through this method, it is expected a response as shown in Figure 6-22.

Figure 6-22. Damped Response

The critical gain is defined as the gain of a proportional controller that generates an oscillation with
constant amplitude on the closed loop system, while the critical period is the period of oscillation.

The critical gain is a measure of system controllability, that is, it is easier as controlling the system as

higher is the critical gain. The critical period of oscillation is a measure of the response speed of the

closed loop system, that is, the period of oscillation is longer as the system as will be slower. During
this chapter the critical gain is named as GPc and a period critical as Tc.

It is important to remember that gains slightly less than GPc generate oscillations which period

decreases along the time, while the gains higher than GPc generate oscillations which amplitude
increases along the time. In case of gains is higher than GPc it is necessary to be careful and do not

make the system critically unstable.

The process to determine GPc and Tc consists in closing the loop with the controller in automatic

mode and disabling the integral and derivative actions. The steps are the following:

 Remove the integral and derivative actions through the respective input parameters

 Increase the proportional gain with small increments. After each increment insert a small system

disturb on the system using a small step on the set point (SP)

 To verify the behavior of the system (PV), the oscillation amplitude must increase as the gain

increases. The critical gain (GPc) will be which generates oscillations with constant amplitude

(or almost constant) according the Figure 6-23

 Measure the period of these oscillations (Tc)

6. Libraries

 228

To determine the controller constants just apply the values of Tc and GPc on the formulas of the

Table 6-15

Figure 6-23. Oscillations with Constant Amplitude

Controller Type Constant

Proportional (P) GP = 0,5.GPc

Proportional and Integral (PI)
GP = 0,45.GPc

Ti = Tc/1,2

Proportional, Integral and Derivative (PID)
Gp = 0,75.GPc
Ti = Tc/1,6

Td = Tc / 10

Table 6-15. Values of GPc e Tc

Determination of Controller Constants Through the Process Constants
This method is applied well to linear processes, of first order (similar to a RC circuit) and with dead

time. In practice, many industrial processes fit into this model.

The method requires, initially, determining the following process characteristics using opened loop:

 K: Static gain of process. It is defined as the ratio between a PV variation and a MV variation,

that is, K = PV/MV

 Tm: Dead time, defined as the time between the beginning of a variation on output MV (t0) and

the start of the system reaction

 T: Time constant of the system, defined as the time which the process variable takes to reach

63.212% of its final value

Furthermore, the method requires two additional parameters which are not characteristics of the

process itself, and should be entered by the user:

 Tr: Response time desired after the loop tuning. This is an interesting feature, because through
this parameter the user can enter a condition of performance of the controlled loop

 dt: Sample time in seconds, that is, the period to call the functional block and update the PV

input PV and MV output. The constant dt symbolizes an additional dead time, which must be

added to Tm. In practice, dt/2 is added to the Tm value, as this is the average dead time inserted

The response time Tr can be compared with a time constant of the closed loop, as shown in Figure
6-24.

6. Libraries

 229

Figure 6-24. Tr Compared with a Time Constant

The parameter Tr, on Figure 5-24, shows the response time desired. It is the measured time between

the start of the system response (after the dead time Tm), and when PV reaches 63.21% of its total
excursion. Through Tr the user can specify a performance requirement for the controlled loop. It

should be careful to not specify response times lower than one tenth of the constant time of the

system, because otherwise the system can become unstable. Than Lower as is the value of Tr as

greater is the necessary gain.

Afterwards, it is described how to determine, through an opened loop test, the other parameters (K,

Tm, and T), that characterize the process. A simple way to determine these process constants is

putting the PID function block in manual mode, generate a small step on MV and plot the PV
response time. For slow process it can be done manually, but for rapid processes it is advisable the

use of an oscilloscope or other device that monitors the PV variation. The step on MV should be

large enough to cause a noticeable variation on PV.

The Figure 6-25 represents a step on the MV output, applied at time t0, and the response of a linear

system of first order with dead time.

6. Libraries

 230

Figure 6-25. Step in MV and System Response to Step

Through Figure 5-25, all required constants for the determination of the controller parameters can be

obtained. The static gain of the process is obtained by varying the ratio between the process variable
and the variation rate of manipulated variable, that is:

K = _PV2 – PV1_

 MV2 – MV1

The dead time, Tm, is the time between the application instant of the step on MV (t0) and the
beginning of the system response.

The system time constant, T, is the time between the beginning of the system reaction and 63.212%

of the final value of PV, that is:

0.63212 = _PV’ – PV1_

 PV2 – PV1

From the system constants, K, Tm and T, controller parameters can be obtained using the formulas of

the Table 6-16.

6. Libraries

 231

Controller Type Constants

Proporcional, Integral e Derivativo (PID)

GP = _______T_________

 K * (Tr + Tm + dt/2)

Ti = T

Td = Tm/2 + dt/4

Table 6-16. Controller Parameters

Gains X Scales

It is important to remember that the proportional gain only perform its action correctly when both the

input and output of the system are using the same scales. For example, a proportional controller with

unitary gain and input (PV) using the range 0-1000 only be really unit if the output range (MV) is
also 0-1000.

In many cases the input and output scales are different. There may be mentioned as an example a

system where the input analog card is 4-20 mA, where 4 mA corresponds to the value 0 and 20 mA

corresponds to the value 30000. And the analog output card is 0 V to 10 V, where 0 V corresponds to
the value 0, and 10 V corresponds to the value 1000. In this cases, the scales adjustment can be made

by the proportional gain instead of a normalization of the input or output values.

One strategy that can be adopted is, initially, determine the gain in terms of percentage (independent
on the scales), without worrying about the type of input and output analog modules used. After that,

with this gain determined, the scale corrections must be executed, before introducing the proportional

gain on the PID function block.

The strategy consists in determining the proportional gain of the system using the percentage range

(0% to 100%) of both the process variable (PV) and the manipulated variable (MV), regardless of the

absolute values of both PV and MV.

It will lead to the determination of a proportional gain called GP%. This gain GP% cannot be used
directly in the PID function block. Before it is necessary to fix the scales, considering the absolute

values of these variables.

WARNING:

In the previous section, Suggestions for Adjustments of the PID Controller are suggested
methods of adjustment in which the scale corrections are implicit to the method and it should not be

considered. In the next section, Application Example, the scale corrections are also unnecessary,

because it is used one of the methods discussed in the section Suggestions for Adjustments of the

PID Controller.

The scale corrections are described by the following example.

Consider an air conditioning system where the analog input module is reading a PTC resistor

(positive thermal coefficient) and the analog output module generates a voltage of 0 to 10V to act on
the valve responsible for circulating the water that cools the air blown.

The input module works with a range from 0 to 30000, but the useful range is 6634 to 8706 with the

following meaning:

 EA0 = 6634 = 0% = 884.6 (corresponding to the minimum temperature which can be

measured)

 AI1 = 8706 = 100% = 1160.9 (corresponding to the maximum temperature that can be
measured)

The output module uses the same range from 0 to 30000 with no restrictions and with the following

meaning:

 SA0 = 0 = 0% = 0 V (corresponding to the minimum water flow through the valve)

6. Libraries

 232

 SA1 = 30000 = 100% = 10 V (corresponding to the maximum water flow through the valve)

Assuming that the gain GP% was previously determined, the gain GP can be calculated using the

following equation:

GP = GP% * R

Where:

R = _SA1 – SA0_

 EA1 – EA0

For the previous example:

R = __3000 – 0__ = 14,478

8706 – 6634

This R ratio is a constant that, when multiplied by the proportional gain of the controller,
compensates the differences between the input and output ranges without the necessity of a direct

normalization.

Application Example

This section will show a practical example of using the PID function block, covering various stages

of process design and its control system.

Process Description
The example process has as objective the supply of heated water, at controlled temperature, for a
consumer. The heating will be done using a gas burner being controlled from the flow gas variation

through a valve.

The Figure 6-26 illustrates this process.

Figure 6-26. Sample Temperature Control

It is observed that the temperature transmitter (TT) is located near the consumer, which is 20 meters

from the point of heating the water. Processes like this are good examples of how dead times can be

introduced. This is because the heated water at the point of heat takes some time to cover the distance

from the measuring point to the consumer. Dead times were previously discussed (Figure 6-24).

Some hypotheses were assumed on this process modeling:

 It is assumed that the water reaches the point on the heating burner is fixed temperature of 30 ºC

 It is assumed that water flow is constant

6. Libraries

 233

 It is assumed that the gas pressure is constant

 Some characteristics of this process and the elements used are defined following

 The heated water must have its temperature set between 50 ºC and 80 ºC

 The temperature transmitter TT have output from 4 to 20 mA, and it behaves linearly, such that 4

mA correspond to 30 ºC and 20 mA corresponds to 130 ºC

 It is assumed that to increase the water temperature in 10 ºC, it is necessary to inject 1 m³/h of

gas. This behavior is linear

 The gas valve closes with 4 mA, injecting 0 m³/h of gas. On the other hand, with 20 mA, it

injects 8 m³/h of gas

Description of Analog Modules

As can be seen in the Figure 6-26, it requires an analog output of 4-20 mA, and an analog input of 4-

20 mA, such as interfaces between the controller and process.

Internally to the controller, these ranges of 4-20 mA correspond to variables (PV and MV). These

numerical range values can vary depending on the input and output analog modules selected. In this

example, it is assumed the following:

PV analog input (0 to 30000):

PV = 0 ---> 4 mA ---> 30 ºC

PV = 30000 ---> 20 mA ---> 130 ºC

MV analog output (0 to 10000):

MV = 0 ---> 4 mA = 0 ---> 0 m³/h

MV = 10000 ---> 20 mA ---> 8 m³/h

Setpoint

The variable SP must be used to program the desired temperature between 50 ºC and 80 ºC.

As this variable must be compared with PV, it must have the same numeric range of PV, that is:

SP = 0 ---> 30 ºC

SP = 30000 ---> 130 ºC

Or to restrict the range between 50 ºC and 80 ºC:

SP = 6000 ---> 50 ºC

SP = 15000 ---> 80 ºC

General Block Diagram and Limit Values

The Figure 6-27 shows an overall of the system block diagram (controller + process), where into the

controller is shown the PID function block. Note that SP, PV and MV are variables of the controller.

6. Libraries

 234

Figure 6-27. Block Diagram of the PID Function Block

SP:

minimum = 6000 (50 ºC)

maximum = 15000 (80 ºC)

PV:

minimum = 0 (30 °C)

maximum = 30000 (130 ºC)

MV:

minimum = 0 (0 m³/h)

maximum = 7500 ---> (6 m³/h)

It is observed that in the case of MV, although the valve is able to inject 8 m³/h, it is desirable to limit

this flow in 6 m³/h.

Process Parameters

The Figure 6-28 shows the result of a test on the opened loop process. To perform this test, it was

used the variables MV and PV directly, with its internal units.

6. Libraries

 235

Figure 6-28. Open Loop Test

From Figure 6-28 can determine the three basic parameters, as explained above in the section
Application Notes.

Tm = 10 seconds (dead time, as the step was applied at t = 50 s and started responding at t = 60 s).

T = 30 seconds (time constant, as the response started at t = 60 s, and reached 63.21% of excursion at

t = 90 s):

9792 = 6000 + (12000 - 6000) * 0,6321.

K = 2.4 (static gain of the process)

2.4 = _12000 – 6000_

5000 – 2500

Tuning Controller

As the test opened loop was used, it will use the second tuning method described in the Application

Notes.

To use this method, besides the process parameters determined in the previous section (Tm, T and

K), it is also necessary that the user enter other two parameters:

 Tr: Or response time desired. In this example, it will be arbitrated in 10 seconds (one-third of the

constant time using opened loop)

 dt: Or cycle time of the PID function block. As mentioned above, this time must be less than 10

times the constant time using opened loop, or even less. Therefore, the value must be less than 3

seconds. It was selected dt = 1 second

Now, it is possible to apply the equations of the method:

GP = T / (K * (Tr + Tm + Dt/2)) = 30 / (2.4 * (10 + 10 + 1/2) = 0,609

Ti = T = 30 s/rep

6. Libraries

 236

Td = Tm/2 + Dt/4 = 10/2 + 1/2 = 5.25 s

LibRecipeHandler

This library enables the manipulation of Recipes by the PLC.

ATTENTION:

A system library is used for this library to work correctly. This library is added to the project when
the Recipe Manager object is added. If Recipe Manager is not added, a compilation error message

will be presented if LibRecipeHandler is used.

WriteRecipe

This function allows the writting of values from a recipe inside a Recipe Definition object to
application variables running in the PLC. The input parameters of this function are described at Table

6-17.

Input Parameters Type Description

sRecipeDefinitionName STRING
STRING with the name of the Recipe Definition object where
the Recipe to be written is. This field is case sensitive, take

care to match names perfectly.

sRecipeName STRING

STRING with the name of the Recpe to be written to and

defined within the Recipe Definition object. This field is case
sensitive, take care to match names perfectly.

Table 6-17. Input Parameters

When the funtion is executed successfully, it will return 0. When there’s an error, it will return an
error code. The function’s return is a DWORD type, but it can be declared as an enumerable named

RECIPE_RETURN_VALUES. The possible return codes are presented at Table 6-18.

Error Code Value Description

ERROR_OK 16#0 Function executed correctly.

ERROR_RECIPE_NOT_FOUND 16#4003

The recipe name within the Recipe Definition object

is either missing or wrong. It also indicates an error
in the STRING input parameter. For instance, the
STRING cannot be null and must be no larger than

60 characters, and cannot have the ‘|’, ‘.’ or ‘/’
characters.

ERROR_RECIPE_DEFINITON_NOT_FOUND 16#4004

The Recipe Definition object name is either missing

or wrong. It also indicates an error in the STRING
input parameter. For instance, the STRING cannot

be null and must be no larger than 60 characters,
and cannot have the ‘|’, ‘.’ or ‘/’ characters.

ERROR_NO_RECIPE_MANAGER_SET 16#4006

There’s no Recipe Manager object in the project
where the function was added.

This error happens when function parameters are
consistent, but failed subsequent function
verifications.

Table 6-18. Function’s Error Codes

Before executing the write command, the function will consist the input parameters. If there’s any
inconsistency, it will indicate an error in the Recipe or Recipe Definition. If the parameters’

STRINGs are valid, the function will attempt to write. If the Recipe or Recipe Definition are not

loaded in the PLC, an error may happen.

ST usage example with a RECIPE_RETURN_VALUES declaration for the function’s return:

VAR

 sName : STRING := 'Recipe001';

 sDef : STRING := 'Recipes';

 mRET :RECIPE_RETURN_VALUES;

6. Libraries

 237

 boolStartProcess : BOOL;

END_VAR

mRET := WriteRecipe(SDef,SName);

IF mRET <> RECIPE_RETURN_VALUES.ERROR_OK THEN

 boolStartProcess:= FALSE;

ELSE

 boolStartProcess := TRUE;

END_IF;

7. Glossary

 238

7. Glossary

Active CPU In a redundant system, the active CPU performs the control of the system by reading the values of points

of entry, running the program application and triggering the values of outputs.

Algorithm Finite sequence of well-defined instructions to solve problems.

Application Program Is the program loaded into a PLC, which determines the operation of a machine or process.

Assembly Language Microprocessor programming language, also known as machine language.

Bit Basic information unit, it may be at 1 or 0 logic level.

Breakpoint Breakpoint in application for debugging.

Broadcast Simultaneous dissemination of information to all nodes connected to a communications network.

Bus Set of interconnected I/O modules to a CPU or to a head of network field.

Byte Information unit composed by eight bits.

CAN Communication protocol widely used in automotive networks.

Communication
network

Set of equipment (nodes) interconnected by communication channels.

Context Menu Dynamic Menu with content according to the current context.

CPU Central Processing Unit. It controls the data flow, interprets and executes the program instructions as well
as monitors the system devices.

Cycle Complete application program implementation of a programmable controller.

Default Preset value for a variable, used in case there is no definition.

Diagnostics Procedure used to detect and isolate faults. It is also the set of data used for this determination, which
serves for the analysis and remediation.

Download Load configuration or program in the PLC.

Frame A unit of information transmitted on the network.

Gateway Equipment for connecting two communication networks with different protocols.

Hardware Physical equipment used in data processing which normally run programs (software).

IEC 61131 Generic standard for operation and use of PLCs. Former IEC1131.

Interface Adapts electric and/or logically the transfer of signals between two devices.

Input/output Also called I/O. I/O devices on a system. In the case of PLCs typically correspond to modules digital or
analogue output or input monitoring or driving the controlled device.

I/O See Input/Output.

I/O Module Module belonging to subsystem of inputs and outputs.

Kbytes Memory size unit. Represents 1024 bytes.

Login Action to establish a communication channel with the PLC.

Master Equipment connected to a communications network where originate command requests to other network

equipment.

Menu Set of options available and displayed by a program in the video and that can be selected by the user to

activate or to perform a particular task.

Module (hardware) Basic element of a system with very specific functionality. It’s normally connected to the system by

connectors and may be easily replaced.

Node Any station of a network with communication skills using an established protocol.

Operands Elements on which the instructions work. Can represent constants, variables, or a set of variables.

PLC Acronym for programmable controller. See Programmable Controller.

POU Program Organization Unit, is a subdivision of the application program that can be written in any of the

available languages.

Programmable

Controller

Also known as PLC. Equipment controlling a system under the command of an application program. It is

composed of a CPU, a power supply and I/O modules.

Programming

Language

A set of rules and conventions used for the elaboration of a program.

Protocol Procedural rules and conventional formats which, upon control signals, allow the establishment of a data
transmission and error recovery between equipment.

RAM Random access memory. Is the memory where all addresses can be accessed directly in a random way
and with the same speed. Is volatile, i.e., its content is lost when the equipment is de-energized, unless if

you have a battery for retaining values.

Reset Command to reboot the PLC.

RUN Command to put PLC in execution mode.

Set Action to assign the logical high level state to a boolean variable.

Slave Equipment connected to a communications network that transmits data only if it is requested by other
equipment called master.

7. Glossary

 239

Software Computer programs, procedures and rules related to the operation of a data processing system.

STOP Command to freeze the PLC in its current state.

Sub network Segment of a communication network that connects a group of devices (nodes) with the goal of isolating

the local data traffic or using different protocols or physical media.

Supervisory Station Equipment connected to a PLC network with the goal of monitoring and controlling the process variables.

Tag Name associated with an operand or the logic that allows a brief identification of your content.

Timeout Maximum preset time to a communication to take place. When exceeded, then retry procedures are
started or diagnostics are activated.

Token Is a tag that indicates who is the master of the bus at the time.

Tooltip Text box with a help or where you can enter with the help.

Tree Data structure for hardware configuration.

Upload Reading of the program or configuration from the PLC.

Watchdog Electronic circuit that checks the equipment operation integrity.

Word Information unit composed by 16 bits.

XML Extensible Markup Language: is a standard for generating markup languages.

Zoom In the context of keyboard function window, is used for the exchange of screens.

	Summary
	1. Introduction
	Documents Related to this Manual
	General Regards on ALTUS Documentation
	MasterTool IEC XE Support Documentation

	Visual Inspection
	Technical Support
	Warning Messages Used in this Manual

	2. Concepts and Basic Components
	Introduction
	Basic Concepts
	Advanced Functionalities
	Object Orientation in Programming and in the Project Structure
	Special Data Types
	Operators and Special Variables
	User Management and Access Rights Concept
	Characteristics in Editors
	Library Versions
	Additional Functionalities

	Profiles
	Project
	Device
	Application
	Task Configuration
	Important Notes for Multitasking Systems

	Communication
	Code Generation and Online Change
	Code Generation and Compile Information
	Online Change
	Boot Application (Boot Project)
	Sending/Login Project Method without Project Differences

	Monitoring
	Debugging
	Supported Programming Languages
	Program Organization Units
	POU
	Calling POUs

	Program
	Program Calls

	Function
	Function Call

	Function Block
	Function Block Instance
	Calling a Function Block
	Assigning Parameters at Call

	Extension of a Function Block
	Method Invocation

	Data Type Unit
	Method
	Inserting Methods
	Method Call
	Special Methods for a Function Block
	Method Call also (Application is Stopped)

	Property
	Monitoring a Property

	Action
	Calling an Action

	External Function, Function Block, Method
	Global Variable List - GVL
	Persistent Variables
	External File
	POUs for Implicit Checks

	Library Management
	Installing and Including on Project
	Referenced Libraries
	Library Versions
	Unique Access to Library Modules or Variables
	Creating Libraries, Encoding, Documentation

	3. Menu Commands
	Library Manager
	Library Manager Commands
	Add Library
	Sub dialog Library
	Sub dialog Placeholder
	Placeholder Within Project
	Placeholder Within Library Project

	Properties
	Try to Reload the Library

	4. Programming Reference
	Declaration
	Variables Declaration
	Multiple Use of Identifiers (Namespaces)
	AT <Address>
	Type

	Recommendations on the Naming of the Identifiers
	Variable Names
	Variable Names in MasterTool IEC XE Libraries
	User Defined Data Types (DUT)
	User Defined Data Types (DUTs) in MasterTool IEC XE Libraries
	Functions, Function blocks, Programs (POU), Actions
	POUs in MasterTool IEC XE Libraries
	Visualization Names

	Variables Initialization
	Arbitrary Expressions For Variable Initialization
	Declaration Editor
	Autodeclaration Dialog
	Shortcut Mode
	AT Declaration
	Keywords
	Local Variables VAR
	Input Variables - VAR_INPUT
	Output Variables - VAR_OUTPUT
	Output Variables in Functions and Methods

	Input and Output Variables - VAR_IN_OUT
	Global Variables - VAR_GLOBAL
	Temporary Variables - VAR_TEMP
	Static Variables - VAR-STAT
	External Variables – VAR_EXTERNAL
	Attribute Keywords for Variable Types
	Remanent Variables
	Retain Variables
	Persistent Variables

	Constants
	Typed Literals
	Constants in Online Mode

	Variables Configuration – VAR_CONFIG
	Declaration and Initialization of User Defined Data Types
	FB_Init and FB_Reinit Methods
	FB_Init
	Interface of the Init Method
	User Defined Input

	FB_Reinit

	FB_Exit
	Pragma Instructions
	Message Pragma
	Attribute Pragmas
	User Defined Attributes
	Displaymode Attribute
	Global_init_slot Attribute
	Hide Attribute
	Hide_all_locals Attribute
	Init_Namespace Attribute
	Init_on_onlchange Attribute
	Instance-path Attribute
	Linkalways Attribute
	Monitoring Attribute
	No_check Attribute
	No_init Attribute
	Obsolete Attribute
	Pack_mode Attribute
	Qualified_only Attribute
	Reflection Attribute
	Symbol Attribute

	Conditional Pragmas
	Conditional Compilation Operators

	List Components Functionality

	I/O Mapping
	General
	Channels

	Data Types
	Standard Data Types
	BOOL
	BIT
	Integer Data Types
	REAL/LREAL
	STRING
	Time Data Types

	Extensions to the IEC 1131-3 Standard
	Norm- Extended Data Types
	UNION
	LTIME
	WSTRING
	Pointers
	Function Pointers
	Index Access to Pointers
	CheckPointer Function

	References
	Check For Valid References

	User Defined Data Types
	ARRAYS
	ARRAYS Initialization
	Accessing ARRAY Components
	Check Functions

	Structures
	Initialization of Structures
	Access on Structure Components

	Enumerations
	Extensions to the IEC 61131-3 Standard

	Subrange Types
	Check Functions

	Operators
	IEC Operators and Norm-Extending Functions
	Arithmetic Operators
	ADD
	MUL
	SUB
	DIV
	Check Functions

	MOD
	MOVE
	SIZEOF
	INDEXOF

	Bitstring Operators
	AND
	OR
	XOR
	NOT

	Bit-Shift Operators
	SHL
	SHR
	ROL
	ROR

	Selection Operators
	SEL
	MAX
	MIN
	LIMIT
	MUX

	Comparison Operators
	GT
	LT
	LE
	GE
	EQ
	NE

	Address Operators
	ADR
	BITADR
	Content Operator

	Calling Operator
	CAL

	Type Conversion Functions
	BOOL_TO Conversions
	TO_BOOL Conversions
	Conversion between Integral Data Types
	REAL_TO / LREAL_TO Conversions
	TIME_TO/TIME_OF_DAY Conversions
	DATE_TO/DT_TO Conversions
	STRING_TO Conversions
	TRUNC
	TRUNC_INT
	ANY...TO Conversions

	Numeric Functions
	ABS
	SQRT
	LN
	LOG
	EXP
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	EXPT

	IEC Extending Operators
	__ISVALIDREF
	Norm-Extending Scope Operators
	Global Scope Operator
	Global Variable List Name
	Library Namespace
	Enumeration Name

	Operands
	Constants
	BOOL Constants
	TIME Constants
	DATE Constants
	TIME_OF_DAY Constants
	DATE_AND_TIME Constants
	Number Constants
	REAL/LREAL Constants
	STRING Constants
	Typed Literals

	Variables
	Accessing Variables
	Addressing Bits
	Bitaccess Via a Global Constant
	Declaration in Global Variables List

	Address
	Memory Location
	Address

	Functions
	TIME()-Function

	5. Programming Languages Editors
	CFC Editor
	Continuous Function Chart Language - CFC
	Cursor Positions in CFC
	CFC Elements / Toolbox
	Insert and Organize Elements
	Inserting
	Selecting
	Replacing Boxes
	Moving
	Connecting
	Copying
	Editing
	Deleting
	Execution Order, Element Numbers
	Changing Size of the Working Sheet

	CFC Editor in Online Mode
	Monitoring
	Breakpoint Positions in CFC Editor

	SFC Editor
	SFC - Sequential Function Chart
	Cursor Positions in SFC
	Texts
	Element Bodies

	Working in SFC Editor
	Insert Elements
	Select Elements
	Editor Texts
	Edit Associated Actions
	Cut, Copy, Paste Elements
	Delete Elements

	SFC Element Properties
	SFC Elements / Toolbox
	Step-Transition
	Transition
	Action
	IEC Conforming Step Action (IEC Action)
	IEC Extending Step Actions
	Step Entry Action
	Step Active Action
	Step Exit Action

	Branches
	Parallel Branch
	Alternative Branch

	Jump
	Macro

	Qualifier
	Implicit Variables - SFC Flags
	Step and Action Status and Step Time
	Symbol Generation
	Time Via TIME Variables
	Control of SFC Executions (Timeouts, Reset, Tip Mode)
	Accessing Flags

	Sequence of Processing in SFC
	SFC Editor in Online Mode
	Monitoring

	Structured Text (ST) / Extended Structured Text (ExST)
	Expressions
	Valuation of Expressions
	Assignment as Expression

	Instructions
	Assignment Operator
	Extended Features

	Calling Function Blocks in ST
	RETURN Instruction
	IF Instruction
	CASE Instruction
	FOR Loop
	WHILE Loop
	REPEAT Loop
	CONTINUE Instruction
	EXIT Instruction
	JMP Instruction
	Comments in ST

	ST Editor
	ST Editor in Online Mode
	Monitoring
	Forcing of Variables
	Breakpoint Positions in ST Editor
	Breakpoint Display in ST

	FBD/LD/IL Editor
	Function Block Diagram - FBD
	Ladder Diagram - LD
	Instruction List - IL
	Modifiers and Operators in IL

	Working in the FBD e LD Editor View
	Working in the IL Editor View
	Structure of the do IL Tabular Editor
	Multiple Operands (Extensible Operators)
	Complex Operands
	Function Calls
	Function Block Calls, Program Calls
	Action Call
	Method Call
	Jump

	Cursor Positions in FBD, LD and IL
	IL Editor
	FBD and LD Editors

	FBD/LD/IL Menu
	Elements
	FBD/LD/IL Toolbox
	Network
	RET Network

	Assignment in FBD/LD/IL
	Jump
	Label
	Boxes in FBD/LD/IL
	Use in FBD, LD
	Use in IL
	RETURN Instruction in FBD/LD/IL

	Branch / Hanging Coil in FBD/LD/IL
	FBD, LD
	IL (Instruction List)

	Contact
	FBD, IL

	Coil
	FBD, IL

	Set/Reset in FBD/LD/IL
	FBD and LD
	IL

	Set/Reset Coils
	FBD/LD/IL Editors in Online Mode
	Monitoring
	Forcing/Writing of variables
	Breakpoint and Halt Positions

	6. Libraries
	The Standard.library Library
	String Functions
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	INSERT
	DELETE
	REPLACE
	FIND

	Bistable Function Blocks
	SR
	RS

	Trigger
	R_TRIG
	F_TRIG

	Counter
	CTU
	CTD
	CTUD

	Timer
	TP
	TON
	TOF
	RTC

	The UTIL.library Library
	BCD Conversion
	BCD_TO _INT
	INT_TO_BCD

	BIT/BYTE Functions
	Extract
	Pack
	Putbit
	Unpack

	Mathematical Auxiliary Function
	Derivative
	Integral
	Lin_TRAFO
	Input Variables
	Output Variables

	STATISTICS-INT
	STATISTICS_REAL
	VARIANCE

	Controllers
	PD
	Inputs of the Function Block
	Outputs of the Function Block

	PID
	Inputs of the Function Block
	Outputs of the Function Block

	PID_FIXCYCLE

	Signal Generators
	BLINK
	FREQ_MEASURE
	Input Variables
	Output Variables

	GEN

	Function Manipulators
	CHARCURVE
	RAMP_INT
	RAMP_REAL

	Analogue Value Processing
	HYSTERESIS
	LIMITALARM

	NextoPID.library Library
	PID
	PID_REAL
	PID_INT
	Application Notes
	Selection of Sample Time
	Feedforward/Bias
	Cascade Control
	Important Considerations

	Suggestions for Adjustments of the PID Controller
	Determination of Controller Constants Through the Period and the Critical Gain
	Determination of Controller Constants Through the Process Constants

	Gains X Scales
	Application Example
	Process Description

	Description of Analog Modules
	Setpoint
	General Block Diagram and Limit Values
	Process Parameters
	Tuning Controller

	LibRecipeHandler
	WriteRecipe

	7. Glossary

